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ESIPUHE 

Pitkän puhteen jälkeen mielessä päällimmäisenä on kiitollisuus. Välitön kiitos kuuluu 
niin monille teille, ketkä ovat olleet mukana haalimassa rahoitusta, toteuttamassa 
menetelmiä ja jakamassa julkaisemisen tuskaa. Tätä työtä tehdessä ensiarvoisen 
tärkeäksi osoittautui myös monenlainen epäsuora ja työn ulkopuolinen apu. Olen 
kovasti kiitollinen esimiehilleni, jotka onnistuivat järjestämään suojaa 
organisaatioturbulensseilta, hallinnollisesta kuormasta, vapaata tarpeen tullen ja 
kollegoille jotka ovat osallistuneet projektireen vetämiseen kun aisat ovat itseltä 
meinanneet tipahtaa. Toivon, että osaan tästä työstä jakaa ansiota myös kaikille teille, 
jotka olleet raahaamassa ruudun äärestä lenkille, rokkiakatemialle, kokkikouluun, ylös 
alas lumisia nyppylöitä, raamattua tulkitsemaan ja usein aktiviteettien päätteeksi joko 
Gore-Texit, Lycrat tai hupparit yllä tuopin ääreen. Arvostan kovasti teitä kaikkia, 
jotka ovat olleet mukana järjestämässä reissuja, tapahtumia, sietäneet ajoittaista 
aloitteellisuuden puutetta ja sään mukaan eläneitä keväisiä ja syksyisiä aikataulua. 

Haluan antaa ison kiitoksen ohjaajalleni Prof. Ulla Ruotsalaiselle. Hänen 
rohkaisunsa, asiantuntemuksensa ja sitkeytensä oli minulle korvaamatonta. Olen 
työtä tehdessäni saanut nauttia erityisen hyvästä mentoroinnista ja tästä 
erityiskiitokset kuuluvat Dosentti Jyrki Lötjöselle, Prof. Mark van Gilsille ja Prof. 
Ilkka Korhoselle. Projekti ei olisi edennyt maaliin ilman Prof. Koen van Leemputin 
ja Prof. Lasse Lensun esitarkastukseen vaikeana aikana antamaa laadukasta 
panostaan. Kiitos myös vastaväittäjälleni Prof. Miika Nieminen jo haasteen 
vastaanottamisesta ja aiheeseen paneutumisesta. Artikkeleiden kirjoittajajoukon 
ulkopuolelta haluan mainita Anna-Leena Vuorisen ja Tiina Takalokastarin joiden 
vertaistuki oli työn kannalta kriittisinä hetkinä erittäin tervetullutta. 

Väitöstyötä ovat tukeneet Business Finland (ent. Tekes) ja Teknologian 
Tutkimuskeskus VTT Oy ja Solita Oy projekteillaan Tilakuva, ATLAS, EDIFI, 
SalweImage ja IVVES. VTT ja Solita lahjoittivat myös anteliaasti työaikaa kirjan 
viimeistelyyn. Työtä ovat arvokkain apurahoin tukeneet Suomen Kulttuurirahaston 
Artturi ja Aina Heleniuksen rahasto, Instrumentariumin Tiedesäätiö ja Helsingin 
yliopiston Etelä-Pohjalainen Osakunta. 
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Lopuksi haluan antaa kiitokseni perheelleni, isä-Matille ja sisko-Hannelle tuesta 
myös haasteellisinakin hetkinä. Erityisesti haluan maita Tuija Elon ja kiittää hänen 
työstään perheen ja itseni apuna. Setäni Esa on ollut minulle avuksi monin tavoin 
myös, kuten pitkiä tunteja toista Valtraa komentamalla. 

Kuluva vuosi jäänee mieleen vähän muustakin kuin tämän työn niputtamisesta. 
Etätöiden ja eristäytymisen haasteellisena aikana iloa voi löytää ainakin musiikista ja 
sarkasmista. Upea esimerkki näiden kahden lajin ansiokkaasta yhdistämisestä tämän 
vuoden tunnelmiini löytyy Jarkko Martikaisen sanoituksesta kappaleeseen Raato 
raahautuu (Jarkko Martikainen & Luotetut miehet, Ruosterastaat-albumi, Sakara 
Rekords 2016). 

 
Voiko repiä runoutta, siitä toivottomuudesta 
joka sielua piirittää, heti kun olen valveilla 
 
Voiko siivittää säveltä, täyttämään sitä tyhjyyttä 
Voiko laululla parantaa, tiedä ei jollei yritä 
 
No mä kokeilen, mä laulan sen 
ja kun nyt laulan sen, niin huokaisen 
 
Voi paska, eikö tää lopu koskaan 
Multaa satelee hiljalleen, raato raahautuu huomiseen 
ja huokaisee taas, voi paska 
 
Kuka haluaa kuunnella, harmaantunutta laulua 
Josta sattuma sävyt söi, potki nurkkaan ja mitätöi 
 
Tiedä en mutta tiedän sen, nytkin moni muu ihminen 
Miettii kaikkensa loppua, vaikka kaikki on alussa 

 
Kappaleen erityinen voima on sen kepeästi duurissa soivassa sävelessä. 

Tampereella 7.12.2020 

Kari Antila  
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ABSTRACT 

Image segmentation, partitioning an image to consistent, meaningful segments, is a 
requirement for systematic analysis of its contents. Segmentation is used in medical 
diagnostics and as presented in this work, in treatment planning and therapy 
assessment. This work presents three robust and fast methods for two applications. 
The first two methods were designed facial bones to speed up dental implant 
planning workflows and the third for muscle tumors (uterine fibroids) to automate 
the mid- and post-treatment analysis of the results of ultrasound therapy. 

Both facial bone structures and muscle tumors can take individual, even 
unpredictable shapes. The used volumetric (three-dimensional) imaging modalities 
may suffer from distortions and other types of losses of quality because of the 
constraints set by feasible exposure or available scanning time. A valid, clinical-grade 
segmentation method should solve the problem fast to minimize wait times in the 
therapy planning workflow or almost real time when used to update the plan during 
the therapy. 

To meet these needs we first developed a method that is capable segmenting 
mandibles from Narrow-Beam Volumetric Tomography images. It works by 
deforming a pre-constructed surface model around the mandibular bone. Our 
requirements were later upgraded to include all visible facial bones in Cone-Beam 
Computed Tomography images. For this revised goal we developed a novel data-
driven method that reconstructs facial bone surfaces from continuous patches and 
bridges over holes due to missing teeth or image distortions. When our target shifted 
from the mandibular bone to the muscle tumor segmentation from Magnetic 
Resonance images, we were able to carry over the core properties of the algorithm 
to the new problem successfully. 

We verified the robustness of both facial bone and tumor segmentation with 
independent training and validation sets and found their accuracy to match other 
published work. The requirement for a very tight computing budget was reached 
with as fast as under a minute processing time per image volume. 
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TIIVISTELMÄ 

Kuvien segmentointi, mikä tarkoittaa kuvien sisällön jaottelua yhtenäisiin ja 
merkityksellisiin alueisiin, on välttämätön edellytys kuvien sisällön järjestelmälliselle 
analyysille. Lääketieteessä segmentointia käytetään diagnosoinnissa ja kuten tässä 
työssä, hoitojen suunnitellussa ja niiden tulosten arvioinnissa. Tämä väitöstyö 
esittelee kolme tarkkaa, luotettavaa ja nopeaa segmentointimenetelmää, joista kaksi 
ensimmäistä kehitettiin hammasimplanttien suunnittelua ja kolmas kohdun 
lihaskasvainten ultraääniterapian aikaisten ja jälkeisten tulosten analyysiä varten. 

Sekä kasvojen luurakenteet, että lihaskasvaimet voivat saada yksilöllisiä ja 
vaikeasti ennustettavia muotoja. Myös käytetyt kolmiulotteiset 
kuvantamismenetelmät kärsivät erilaisista häiriöistä ja muista laatuheikkenemistä, 
jotka voivat johtua esimerkiksi kuvaamiseen käytettävän ajan ja mahdollisen 
säteilyaltistuksen asettamista rajoitteista. Kliiniseen käyttöön soveltuvan 
segmentointimenetelmän tulisi toimia luotettavasti ja suorittaa tehtävä nopeasti jotta 
odotusajat hoidon suunnittelussa minimoituisivat tai lähes reaaliaikaisesti 
hoitosuunnitelmaa hoidon aikana päivitettäessä. 

Näitä tarpeita varten kehitettiin ensin alaleuan segmentointimenetelmä kapean 
kulman tomografiakuvia varten. Menetelmä käyttää ennalta koostettua pintamallia, 
mikä sovitetaan leukaluun ympärille. Työn aikana menetelmän käyttötarkoitusta 
laajennettiin kasvojen muidenkin luiden segmentointiin kartiokeila-
tomografiakuvista. Tämä käyttötarkoitus edellytti uudenlaisen, datalähtöisen 
menetelmän kehittämistä kasvojen luuston yhtenäisten osapintojen tunnistamiseen 
ja niiden yhdistämiseen kuvien häiriöitä ja kohteiden epäjatkuvuuksia sietäen. Tämän 
algoritmin pääperiaatteet olivat sovellettavissa myös myöhemmin tehtäväksi 
asetettuun magneettikuvattujen lihaskasvainten segmentointiongelmaan. 

Kehitettyjen menetelmien luotettavuus testattiin erillisillä opetus- ja 
validointijoukoilla ja niiden tarkkuus todettiin vastaavan samankaltaisia julkaistuja 
menetelmiä. Menetelmät suunniteltiin täyttämään tiukat suoritusaikavaatimukset ja 
suoritusajoissa onnistuttiin pääsemään jopa alle minuuttiin per kolmiulotteinen kuva. 
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1 INTRODUCTION 

Since the discovery of X-rays in 1895, Computed Tomography (CT) and Magnetic 
Resonance Imaging (MRI) in the early 1970s, the art and science of medical imaging 
has seen exponential growth in number of devices installed, images collected and 
thus data generated (Aiello et al., 2019). Managing and refining this mass of data to 
practical knowledge has emerged as a major challenge on its own (Dinov, 2016). The 
tools of machine learning (ML) have long been projected to take over the task of 
medical image analysis. Still, the workload of a radiologist has been estimated to have 
increased of up to 50% during the past five years (Alexander et al., 2019). 

 The most common use for medical images is in the making or supporting a 
diagnosis. Images are also needed when planning for a surgery and assessing the 
results of the operation. Utilization of images in these tasks have several bottlenecks. 
Unlike other biomarkers such as those in a standard blood test, raw images may not 
come with easily quantifiable and comparable measures. These measures need to be 
extracted, a task that typically requires some sort browsing, calculating or even 
drawing. Modern high-resolution, volumetric (three-dimensional) images may 
consist of hundreds of stacked image slices and several images may be taken during 
a session or a progression of a condition. If done manually, which is still often the 
case, this can amount to several minutes, even hours of tedious, repetitive work per 
patient. 

Image-based planning is especially important in dental implantology and 
maxillofacial surgeries (Swennen et al., 2009). The planner needs to establish the 
right views to take the right measures, such as the length and width of the fitted 
tooth implant from the taken volumetric scans. Automatic generation of these views 
would speed up the planning workflow considerably. This could be achieved with 
an algorithm that fits a model including the orientations of the desired views to 
individual patient anatomy. The algorithm could be realized by segmenting the facial 
bones (mandible and maxilla) from the surrounding tissues and fitting the views 
along the segmented bone lines. The results would help in ensuring that the implants 
have the correct fit and avoiding costly damage to the surrounding tissues such as 
mandibular nerves and mucous membranes covering the maxillary sinuses (Çiftçi et 
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al., 2016). The primary anatomical areas of for interest in the implant planning are 
presented in Figure 1. 

 

Figure 1. Facial bones and structures often relevant for dental implant and maxillofacial surgery 
planning. 

The planning work in dental implantology and maxillofacial surgeries has 
traditionally been performed on Computerized tomography (CT) images (Bloch & 
Udupa, 1983). Although CT is able to give a very good contrast for the bone, there 
are two major disadvantages: CT usually requires a relatively high dose of ionizing x-
ray radiation and suffers from a dramatic drop in image quality where there is metal 
in the view. Increased awareness of the risks of using ionizing radiation have been 
mitigated by developing new imaging modalities such as Narrow-beam volumetric 
tomography (NBVT) (Cederlund et al., 2014) and Cone-beam computerized 
tomography (CBCT) (M. Loubele et al., 2009). Despite the evolution of these 
methods, the severe distortions caused by metal (fillings, braces, implants) are still 
very common (Chindasombatjaroen et al., 2011), (Nardi et al., 2015). The reduction 
of dose in CBCT also introduces more noise, slightly poorer contrast and a range of 
other characteristic image distortions (M. Loubele et al., 2008), (Liang et al., 2010) 
when compared to CT. 
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The primary objective of this work was to develop a robust, fast and accurate 
segmentation method for facial bones in NBVT and CBCT. This method was 
required to tolerate noise and artefacts that are characteristic for low-dose, 
volumetric dental images. At the beginning of this study only a handful of dental 
segmentation methods had been published and none of those would perform reliably 
with the image material we had at hand. Our first segmentation method was based 
on fitting pre-made surface model around the mandible only. The second method 
was developed for the whole exterior of the face and was based on searching 
consistent surface patches on the facial bones and connecting them to larger 
surfaces. An example of a segmentation result and the orthogonal view generated is 
presented in Figure 2. 

 

Figure 2. Segmentation result for CBCT. An orthogonal view (marked with blue segment on the 
right) is generated on the presumed implant location based on the segmentation. The 
implant’s (in magenta on the left image) depth needs to be correct for it to attach firmly and 
not to damage the mandibular nerve (in red on the left) or the maxillary sinus (in yellow on 
the left). 

Imaging can be a valuable and sometimes the only direct, non-invasive tool for the 
assessment of the success of an operation. Magnetic resonance-guided high-intensity 
focused ultrasound (MR-HIFU) (Kennedy, 2005), (Elhelf et al., 2018) is a form of 
therapy where the target, for example a muscle tumor, is given just enough heat to 
destroy the tumorous tissue without harming the surrounding organs. After, or even 
during the therapy, it is necessary to measure how much of the tumor volume had 



 

4 

been heated to the state of necrosis (cell death). The untreated tissue that has active 
blood flow can be enhanced with a Gadolinium showing bright when the treated, 
necrosed tissue appears dark in MR images taken repeatedly during the therapy. The 
volumes of the Gadolinium-perfused (untreated) and the non-perfused (treated, 
necrosed) regions are needed for a reliable estimate of the long-term success of the 
therapy (Lénárd et al., 2008). Segmentation of these volumes is generally challenging 
since both areas can take complex and arbitrary shapes.  

The secondary objective of this work was set to produce an accurate 
segmentation method capable estimating these volumes (Figure 3) in post-operative 
images, so that the decisions whether to continue the treatment could be made based 
on the best and latest evidence. 

 

Figure 3. Segmentation result for a uterine fibroid after HIFU-therapy on an MR image. The tumor is 
shown in yellow and the necrosis inside the tumor in brown. 
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2 BACKGROUND 

2.1 Image segmentation, definition 

The challenge of automatic detection, recognition and interpretation of objects of 
interest in images and video has seen considerable research effort and investment 
over the history of imaging. The potential value of practical solutions to the problem 
has been recognized and realized in numerous areas of science and engineering 
including machine vision (Beyerer et al., 2015), surveying of natural resources 
(Unsalan & Boyer, 2013), security (AL-Allaf, 2014) and medical imaging. The term 
image segmentation usually refers to partitioning the contents of an image to 
segments that share some consistent, common property and is of special interest in 
the given application. The wide usage of image analysis techniques has led to 
inconsistent terminology. The following presents a consensus of the segmentation-
related terms with the help of an example. 

Automated vehicles need capabilities of analyzing a surrounding scenery (Figure 
4). A bare minimum would be to have functionality to point out potential objects 
that could help in navigating and avoiding obstacles. Thus, a robust object detection 
algorithm would enable functions like automatic braking or a parking assistant. More 
advanced vehicle automation would benefit from object recognition, where the objects 
around the vehicle would be assigned pre-defined classes such as signs, cars or 
persons by the characteristic shape, color or texture they show. This would give the 
application controlling the vehicle a better capability to analyze the dynamic nature 
of the surroundings (which objects are likely to stay still, which will move and at 
what speed) and thus a preemptive vehicle control. A step deeper analysis of the 
surroundings could benefit from partitioning the scene into separate objects along 
their edges (borders, contours), for example to estimate where the lanes and 
sidewalks lay. The task of partitioning the whole scene this way is usually called 
semantic segmentation. A specific object class could be further separated from other 
classes and the background with instance segmentation. When semantic segmentation 
usually partitions the whole scene and treats individual objects belonging to a class 
as a single entity, instance segmentation may be trained to handle distinct instances 
of the class as separate entities (Figure 4 (c) vs. (d)). 
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Figure 4. Object detection (a), object recognition (b), semantic segmentation (c) and instance 
segmentation (d). 

In the context of this work, and biomedical imaging in general, the term segmentation 
usually refers to instance segmentation since the end goal is typically a rather detailed, 
quantitative analysis of objects of a specific class. In a general proper, statistical 
analysis of medical images is possible only after the regions of interest (ROIs) 
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(usually anatomical structures such as a tumor) have been correctly segmented along 
their contours and identified. 

2.2 Imaging modalities 

2.2.1 Orthopanoramic tomography 

Orthopanoramic tomography (OPT) or panoramic radiography is an imaging 
modality developed for creating wide, panoramic views of the dentistry in a single x-
ray scan. The core techniques and methodology of OPT were developed from the 
1940s to 1960s (Paatero, 1961). Since its introduction, OPT has remained popular 
due to its speed, resolution and capability of capturing all teeth and other adjacent 
structures such as the mandibular nerve canals in a single, wide scan.  

An OPT scan is taken by rotating a C-shaped arm is moved around patient’s head 
in a carefully designed pattern so that the layer around the jaws will appear sharp and 
the objects in the background such as the spine will be blurred. (Figure 5).  

 

Figure 5. A typical OPT (panoramic) radiograph that shows all teeth in a single, sharp scan. 
However, it is not possible to conclusively determine the relative distances of objects in the 
depth orientation. The scan also suffers from shadow-like superposition of objects such as 
the scull and the spine. Modified from source material for the Publication III. 

This form of tomography is sometime called “conventional tomography” (Littleton 
& Durizch Littleton, 1996) or “focal plane tomography”. 
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Since the curved tomographic plane of focus in OPT is fixed to the scanner, the 
correct placement of the patient is critical for acquiring the focus only on the jaws 
and not on the background. Even though the background items may appear less 
sharp, they will still be visible. Misplaced objects may appear larger (magnified) and 
cause errors in measurements. Finally, since OPT does not have depth information, 
the relative distance of objects such as teeth roots and nerves cannot be conclusively 
determined by OPT only. 

This work does not involve segmenting or analyzing the OPT scans directly. 
However, the main motivation for Publications I-IV was to generate views for the 
planning of implants. Implant planning remains a popular use case for OPT. With 
the results from Publications I-IV it is possible to use a single volumetric scan like 
CBCT for synthesizing OPT-like views with patient-specific geometry and freely 
adjustable imaging parameters such as size, orientation, position and depth (Figure 
6 and Figure 7). This addresses the problems of superimposition, artificial 
magnification and lack of depth information in traditional OPTs. Synthetization of 
OPTs from CBCT scans is beneficial also because one does not need to scan the 
subject multiple times. This limits the exposure, time and equipment required. 

 

Figure 6. An OPT-like panoramic view synthesized from a CBCT scan. Since the geometry and 
depth of the reconstruction can be freely adjusted or fitted to individual patient anatomy, 
the scan does not suffer from superposition from the skull, spine or other structures. From 
Publication III. © IEEE 2008. 
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Figure 7. Visualization of a synthesized panoramic view (similar to Figure 6) over rendered bone 
surfaces. 

2.2.2 Narrow-Beam Volumetric Tomography 

Narrow Beam Volumetric Tomography is a modality where x-ray volumes can be 
reconstructed with regular OPT scanner hardware (Cederlund et al., 2014). NBVT 
was designed primarily to extend the capabilities of OPT scanners so that is it 
possible to capture also limited depth information for example in tracing roots of 
teeth in relation to the mandibular nerve to avoid damage. 

NBVT is implemented by configuring a scanner to take a series of projection 
scans around the target with its line-type detector. However, the mechanics 
developed for an ordinary panoramic scanner do not allow capturing of projections 
from full 180 degrees around the target (Figure 8). Reconstructing an image with 
limited (incomplete) information do not yield perfect three-dimensional volumes 
and edges with tangential orientation outside the angle of view (AOV) cannot be 
reconstructed from the projections precisely (Quinto, 2017). 
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Figure 8. NVBT projections are collected in limited dense or sparse configuration (for Publication II 
in 11 scans of 4-5 degree spacing. The angle of view (AOV) marks the range of angles 
where the NVBT is theoretically able to reconstruct edges.  

The lack of information appears in NBVT images as false edges and blurring (Figure 
9). These false edges or other features that appear images and do not exist in the real 
target are commonly called image as artefacts. 

 

Figure 9. NBVT image reconstruction from limited information. A mandible section that has edges 
with their tangential orientation in AOV (left) can be reconstructed from an image. Due to 
the limited angles in NBVT (right), angles outside the AOV are difficult or impossible to 
reconstruct. Limited information causes ghosting and false edges. An axial CT image 
(center) reconstructed with full information is provided for comparison. Modified from 
Publication II. © IEEE 2007. 
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2.2.3 Cone-Beam Computed Tomography 

CBCT was developed as a lower-cost, lower-dose alternative to conventional CT 
(Worthington et al., 2010). In CBCT a C-arm equipped with a rectangular image 
sensor and a x-ray source forming a cone-shaped beam performs a single and fast 
half-rotation around the target. This setup differs from conventional CT (sometimes 
called fan-beam CT or multi-slice CT) where a strip-like sensor completes several 
rotations around the target in a helical pattern. CBCT is a good alternative for CT in 
applications where a high exposure is not desirable and the investment and 
infrastructure cost needs to be feasible for small private clinics such as dental 
practitioners. Consequently, CBCT has seen wide use in dental and maxillofacial 
imaging.  

The small exposure of CBCT and the use of cone-shaped beam geometry leads 
to some tradeoffs in image quality (Liang et al., 2010). Lower exposure leads to lower 
signal-to-noise ratio. The cone-shaped beam and the larger detector make the image 
more susceptible to scattering and beam hardening artefacts. Both CT and CBCT 
are especially prone to metal artefacts (Vannier et al., 1997), (Us, 2019) that are very 
common and a major factor in reduced image quality in dental applications (Figure 
10). 

 

Figure 10. Examples of artefacts in CBCT images. Areas of inhomogeneity (left), metal (center) and 
noise (right) are highlighted in red. Modified from Publication IV. 

Metal artefact reduction (MAR) (Us, 2019) can be applied to mitigate the effects of 
streaking and ghosting caused by fillings, braces and other metallic or hard objects 
that have poor x-ray penetration.  

CBCT typically uses algebraic image reconstruction techniques (ART) (Andersen, 
1989) instead of the more traditional filtered backprojection (FBP) that is still 
common in CT. Since CBCT image intensities are not directly computed on x-ray 
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attenuation the gray-value mappings to generally-used Hounsfield Units (HUs) may 
not be straightforward. Known HU values are valuable for example in CT-based 
bone density estimation (Schreiber et al., 2011) and are useful in simple image 
segmentation such as thresholding. The lack of reliable HU scaling limits the use of 
simple segmentation techniques such as threshold for CBCT. 

2.2.4 MR Imaging with High-Intensity Focused Ultrasound 

MRI is a versatile modality used in a variety of structural and functional imaging 
tasks (McRobbie et al., 2006). The physics of MR imaging are based on the 
phenomenon of Nuclear Magnetic Resonance (NMR) where the atomic nuclei, most 
commonly hydrogen are excited by microwaves to have them emit back weak, but 
detectable signal. In MRI no ionizing radiation is needed and a good contrast 
between a range of soft tissues can be achieved. 

Two special properties make MRI a good modality support to HIFU therapy. 
The heat accumulation inside the body can be monitored through the shift in the 
resonance frequency of the protons in the water (Köhler et al., 2009) and the blood 
perfusion to the tumor can be monitored with Gadolinium injection (Burn et al., 
2000). A goal of this work was to segment both parts of the tumor, the (Gadolinium-
) perfused volume (PV) and non-perfused volume (NPV) that represent the 
untreated and the treated part of the tumor (Figure 11). 

The large ROIs that are often needed in HIFU can take time to acquire. The 
images may suffer from patient movement artefacts due to the discomfort of 
receiving the HIFU therapy. Like CT and CBCT, MRI is also prone to metal and 
inhomogeneity artefacts, although these will appear in MRI differently and thus 
require modality-specific pre-processing. 
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Figure 11. Post-operative MR-HIFU image of a uterine fibroid. The (Gadolinium-) perfused volume 
will show in light gray, and the non-perfused volume in dark gray. An MRI inhomogeneity 
artefact is highlighted in red. Modified from Publication V. 

2.3 Error metrics for a segmentation algorithm 

The following chapters will discuss the performance of the presented segmentation 
algorithms against some reference, usually surfaces or volumes drawn by a human 
expert. In case of a binary segmentation, where all voxels are labeled representing 
either a target of background (unlabeled), probably the most commonly used metric 
is the Dice similarity coefficient (DSC) (Dice, 1945), (Sørensen, 1948) 
 
��� � ���	�
���

�	�����  (1) 

 
where X and Y are the sets of voxels labeled as the target in the segmented and 
reference images.  

For surface meshes that have point-to-point correspondence, a simple and 
popular metric is the sum of squares (SS) (Arun et al., 1987) 
 
�� � 
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where p’i and pi are the coordinate vectors of the nodes in the evaluated and 
reference meshes that both have N nodes. � �� represents the Euclidean norm. SS 
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may not be practical in cases where the segmentation does not fit a pre-constructed 
surface model and maintain point correspondence through the dataset. For 
comparing surfaces without point to point correspondence the mean surface 
distance (MSD)  
 ���� ��� � ����������� � ��� (3) 
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or some variant is commonly used. MSD is the standard error metric all publications 
of this work. There S and S’ are the sets of nodes belonging to the evaluated and 
reference surface meshes. Another popular metric is the root mean squared (RMS) 
distance 
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Most articles related to this work present their results either with MSD (exact 
definitions differ slightly) or RMS. Hausdorff distance is yet another popular surface 
error metric in medical image analysis although less used the in the literature of dental 
image processing. 

2.4 Prior work 

Image segmentation is a vast research topic. A Google Scholar search (as of 23th of 
Feb 2020) with terms “medical image segmentation” yields 1,34 million results. To 
outline the scope to dental segmentation, only methods that target facial bones either 
mandible, maxilla or both are discussed in the following sections. The scope is 
further limited to works that report quantitative results in some metric and have CT 
or preferably CBCT as the modality. A few exceptions of this in studies that bring 
clear methodological value are included. Some of the methods presented here take 
bone segmentation as pre-requisite for other purposes such as landmark detection, 
tooth or mandibular canal segmentation. These studies offer comparisons to 
Publications I to IV. 

A brief review of literature for methods of segmenting the uterus in MR images 
will also be conducted. This part is less comprehensive since it has less weight in the 
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results of this work and simply because there is rather little published research 
available for the topic. These works discuss problems similar to what is presented in 
Publication V. 

2.4.1 Facial bone segmentation 

In short, the research of dental CT and CBCT segmentation was first and for rather 
long dominated by methods based on or inspired by active shape models (ASMs) 
(Cootes et al., 1995), other statistical shape models (SSMs) and active appearance 
models (AAMs) (Cootes et al., 2001). This was followed by a period when Multi-
atlas (MA) methods (Aljabar et al., 2009), (BachCuadra et al., 2015) were dominant. 
Results with convolutional neural networks (CNNs) such as the U-net (Ronneberger 
et al., 2015) and other deep neural network topologies have been presented only 
fairly recently. Level sets (Malladi et al., 1995) and path following algorithms 
(Dijkstra) have been applied over time for mandibular substructures (teeth, 
mandibular canal). Local and global thresholding with threshold estimation methods 
such as (Otsu, 1979), and variants of Gaussian mixture models (GMMs) such as 
expectation maximization (EM) (Moon, 1996) have been proposed both early and 
lately. 

Early research with statistical shape models 

An early work by (Vannier et al., 1997) discussed the use of CT in dental and 
maxillofacial imaging and the factors affecting its usability for tasks such as surgical 
and implant planning. The image quality factors including metal artefacts and the 
chosen reconstruction technique were debated in this work also in the context of 
image segmentation. 

(Miet Loubele et al., 2006) were one of the first to present a method and report 
results for dental CBCT segmentation. They used global thresholding and 
determined the thresholds heuristically with histogram analysis (Baillard et al., 2001). 
The CBCT segmentation results were validated against CT and small, but significant 
differences in bone thickness across the mandible, maxilla and substructures were 
reported. Around the same time (Rueda et al., 2006) presented a novel AAM that 
was trained with a sizeable set (n = 215) of CT images to segment the cortical bone, 
trabecular bone and the mandibular nerve. During the same the same year (Lamecker 
et al., 2006) presented an SSM for mandibular segmentation in CBCT. The handling 
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of the surface model in this paper is rather similar to Publications I-III. This work 
introduced a mandible surface model with separated substructure regions, which 
enabled the model to omit teeth due to the special challenges they posed (left/right, 
teeth, condyles). They were able to report a consistent sub 0.35 mm mean distance 
error from segmented mandibular regions to an expert drawn surface. 

(Kainmueller et al., 2009) upgraded the SSM presented in (Lamecker et al., 2006), 
integrated the mandibular nerve canal to the surface model and trained the algorithm 
with a set of CBCT images (n = 109). A Dijkstra-type algorithm (Stein et al., 1998) 
was used to track the canal. This work was able to match the accuracy of (Lamecker 
et al., 2006) and exceed (Rueda et al., 2006) in tracking the mandibular canal. 
(Kainmueller et al., 2009) remains one of the most referenced early work on in 
mandibular segmentation.  

Together (Lamecker et al., 2006), (Rueda et al., 2006) and (Kainmueller et al., 
2009) form the most relevant comparison to Publication I-III due to the similarities 
in the problem setting and used methodology. 

As an interesting and notable departures from the SSM/AAM -based algorithms 
for the period are (Le et al., 2009) that presented a graph cut (Boykov & Funka-Lea, 
2006) based, interactive segmentation technique for both mandibular and maxillary 
regions including the teeth, (Barandiaran et al., 2009) who proposed a mandibular 
segmentation pipeline that consisted of MAR filtering and (Reddy & Kumaravel, 
2010) who took an unique approach with gray-level co-occurrence matrices and 
curvelet transform for voxel classification. 

(Gollmer & Buzug, 2012) presented another SSM with unique shape priors and 
concluded that the determinant of covariant as proposed in (Kotcheff & Taylor, 
1998) performed the best. Most notably, they were able to reach 0.50 mm surface 
error (including mandible but no teeth) with a rather small shape atlas (n = 30). (Duy 
et al., 2012) continued the work in (Kainmueller et al., 2009) by presenting an SSM 
method for individual tooth segmentation and the earliest method found in this 
review capable of segmenting the maxilla in CBCT. 

(Lloréns et al., 2012) presented a method developed for the specific purpose of 
implant planning. The method first estimated the placement and curvature of the 
dental arc and generated both orthopantomograpic and cross-sectional views of the 
mandible. The goal and approach taken in this work is very similar to Publication 
IV. These views were further used to reconstruct the mandible (by thresholding), the 
mandibular nerve (by fuzzy connectedness ((Udupa & Samarasekera, 1996)), cortical 
bone and the trabecular bone. Their work is distinct for its use of the MPR-type 
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space (Preda et al., 1997) curved around the mandibular arc instead of the usual 
Euclidean voxel grid. 

(Chang et al., 2013) presented a method for extracting an anterior wall segment 
of the maxilla in high resolution. This work introduced a wavelet density model 
(WDM) for generating the shape descriptors in an SSM. 

Multi-atlas segmentation 

An article by (Wang et al., 2013) introduced the multi atlas segmentation methods 
for dental imaging. Their core idea was to create the atlas (Aljabar et al., 2009), 
include local context beyond single voxel comparisons by grouping the voxels in 
patches (Coupé et al., 2011), (Rousseau et al., 2011) and use maximum a posteriori 
(MAP) estimation for assigning the voxel labels. The authors also introduced a 
strategy for integrating CT (n=30) and CBCT (n=15) based atlases. Wang et al. 
improved their method further (Wang et al., 2014) by introducing landmark-guided 
registration for better anatomical correspondence in the atlas generation. The work 
also discussed the effect of the atlas size on the segmentation accuracy. (Wang et al., 
2014) was one of the first to include teeth and parts of maxilla were in the 
segmentation. The downside of many atlas-based based methods was their slow 
computation time, in this work approximately 5 hours per volume. The authors cite 
the need to improve the computation time as one of their motivations in (Wang et 
al., 2016) to develop an RF-based (Breiman, 2001) classifier. They extracted a 
number of local and non-local, Haar-like (Viola & Jones, 2001) features based off 
their training atlases. With the RF-based, local segmentation they were able to both 
cut computation time to 20 min and improve the segmentation accuracy. 

(Abdolali et al., 2017) proposed yet another SSM for the mandible and the 
mandibular nerve canal. They found that conditional SSMs (Yokota et al., 2013) 
improve segmentation accuracy over conventional SSMs. An edge-preserving noise 
suppression technique of low-rank decompositions (Ong & Lustig, 2016) was also 
used in pre-processing. 

(Fan et al., 2018) presented a straightforward method where they created a single 
image-template for the mandibular bone with a number of markers for the bone and 
background, performed a non-rigid registration with the FNIRT algorithm of the 
FSL toolbox (Jenkinson et al., 2012) to propagate the labels of the template to new 
samples. (Chuang et al., 2018) revisited the idea multi-atlas segmentation 
implemented in diffeomorphic, FSL-powered registration. Their work was the first 
to use N4 bias field correction (Tustison et al., 2010) to preprocess mandibular CTs. 
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The authors reported remarkable segmentation accuracy, but stated also that the 
human assessed quality of automatic segmentations still clearly trailed the manual 
segmentation in all tested substructures. 

(Cuadros Linares et al., 2019) presented a concept of super-voxels, regions of raw 
voxels locally grouped together based on a similarity measure and by k-means 
clustering. They then construct a weighted graph on the relations of these super-
voxels. The super-voxels were meant to reduce the size of the graph and thus 
computational complexity. The binary segmentation part was based on graph-cuts 
initialized with minimum-effort manual seed inputs (a few brush strokes on the bone 
and background). 

(Indraswari et al., 2019) presented a segmentation pipeline where they first 
perform coarse segmentation for the bone with thresholding and then fit a 
polynomial to gain an estimate of the curvature of the dental arc that they use for 
the eventual reconstruction of 3D surface. For the thresholding they compared a 
GMM against Otsu’s and hierarchical cluster analysis (Arifin & Asano, 2006) and 
found GMM to perform best. The authors also compared the results to the U-net 
and found it accurate but underestimating the size of the bone. 

(Vaitiekūnas et al., 2019) proposed local thresholding in a sliding window using 
Otsu’s with spatial filtering, reconstructed the bone surfaces with run-length 
encoding (Curless & Levoy, 1996) and benchmarked the result against manual 
segmentation in pre- and post-operative CBCT sets with remarkable accuracy of 
0.057 mm MSD. 

The emergence of deep learning 

(Zhang et al., 2017) were the first to test the U-net (Ronneberger et al., 2015) and 
CNNs to a reasonably-sized dataset (CT n = 107, CBCT n = 77). This work followed 
(Wang et al., 2014) and again combined bone tissue segmentation with anatomical 
landmark detection. The pipeline consist of two CNNs in series. The first constructs 
distance maps to chart the landmark placement configuration and the second uses 
the distance maps and the image input to generate bone segmentation maps and 
landmark heatmaps. A major improvement in both mandibular and midface 
segmentation over their previous multi-atlas (Wang et al., 2014) and RF (Wang et al., 
2016) was reported in the paper. The study also concluded that it is beneficial to 
solve the segmentation problem and landmark detection problem simultaneously. 
The authors reported identical results for the bone segmentation later in (Zhang et 
al., 2020). This work presented a more thorough validation and strengthened the 



 

19 

earlier conclusion on the benefits of solving the segmentation and detection 
problems simultaneously. 

Also (Torosdagli et al., 2019) chose to combine mandibular bone segmentation 
and landmark detection. This approach differs from (Zhang et al., 2017) in that it 
solves the segmentation problem first and passes the output for the landmark 
detection. For the segmentation the authors chose a densely connected and very 
deep, 19-layer CNN (Jegou et al., 2017). After segmentation, the pipeline used U-net 
to generate landmark probability maps and LSTMs (Hochreiter & Schmidhuber, 
1997) to localize the landmarks. The authors reported a slight advantage of the 19-
layer CNN over the U-net used in (Zhang et al., 2017) in two independent datasets 
and statistically significant similarity to manual reference segmentation. 

(Minnema et al., 2019) validated four segmentation methods on a CBCT dataset 
corrupted with metal artefacts. Three of these were CNNs: an MS-D (Pelt & Sethian, 
2017), a modified U-net and a ResNet (He et al., 2016) and the last one was an ACM 
(Snake evolution) (Yushkevich et al., 2006). The three CNNs were equally accurate 
and beat the Snake evolution method with a clear margin. The MS-D only used about 
46 thousand trainable parameters vs. 15 million in U-net vs. the 37 million 
parameters in ResNet. 

2.4.2 Image view synthetization 

A dental radiologist or an implant planner needs to have the correct views on the 
areas to be operated on the pre-operative CBCT images. A typical set of commonly 
used views include a (primary) orthopantomographic view over the dentistry (Figure 
6) and a number of (secondary) cross-sectional slices over the target area (Figure 2). 
A single CT or CBCT acquisition can be used to synthesize a countless number of 
views but this process can take a considerable time of drawing, re-orienting and 
configuring. A segmentation method can automatically fit or assist in fitting a frame 
of reference according to which the desired views should be generated to patient 
anatomy and pose. In order to be practical the segmentation method should be fast 
enough to not keep the operator waiting for extended periods during the planning 
workflow. 

One of the first complete image synthetization pipelines including image 
processing, shape modeling and multi-view generation was presented in (Cucchiara 
et al., 2004). The authors formulated a thorough mathematical framework for 
detecting surgical stents in images and discuss the measurement error related to 
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implant planning whether the views are re-oriented according individual anatomy or 
not. (Tohnak et al., 2006) took a rather unique approach where they simulated the 
actual panoramic imaging geometry including the reconstruction. (Chanwimaluang 
et al., 2008) discussed the detection of the dental arch through local thresholding and 
morphological operations. This article presented an alternative solution to a problem 
that is almost identical to our Publication III. (Akhoondali et al., 2009) constructed 
another synthetization pipeline methodology very similar to (Chanwimaluang et al., 
2008). Their work also discusses the emulation of x-ray attenuation parameters to 
gain an appearance that better matches a native scan. (Han et al., 2011) extended the 
work of (Tohnak et al., 2006) by refining the pipeline by automating the image 
processing operations. 

(Sa-Ing et al., 2013) were the first to present a large (n = 120) dataset for 
panoramic image synthetization. Their article recycles much of the methodology 
(thresholding and morphological operations) proposed since (Cucchiara et al., 2004). 
CBCT image synthetization is further discussed by (Luo et al., 2016). Their described 
application is a very close match to ours in Publications III-IV. (Papakosta et al., 
2017) presented a proper quantitative learning and validation strategy for modelling 
dental curvature. Again the same rudimentary segmentation (thresholding and 
morphological operations) was exploited in (Yun et al., 2019). The main novelty of 
this work is in how the thickness of the dental arc was estimated and how the 
thickness parameter was implemented for the synthetization. The work (Bae et al., 
2019) puts special emphasis on fitting the occlusal plane (a plane that fits to gap 
between upper and lower teeth when the mouth is closed) and introduces a B-spline-
based modelling approach for the dental arc estimation. The spline modelling aspect 
presented the paper is similar to what we used in Publication IV. It differs from ours 
in that the spline was mostly used for smoothing the segmentation result where ours 
is also for filling gaps and holes and in the type of spline selected (B-spline vs. thin 
plate). 

2.4.3 Muscle tumor segmentation 

Pre- or post-operative MR-HIFU fibroid segmentation is a sparsely studied topic. 
To gain wider understanding of the background, also studies of the segmentation of 
a healthy uterus are covered in the following section. After an early work by (Yao et 
al., 2006) only two known distinct tracks of research on the topic, the first started in 
(Fallahi et al., 2010) and the second in (Militello et al., 2013) have been conducted. 
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The methods proposed in (Fallahi et al., 2010) in (Fallahi et al., 2011) are based 
on an evolution of the fuzzy c-means (FCM) algorithm (Pal et al., 2005). They first 
acquire a rough tissue classification by the non-probabilistic version of the FCM, 
refine the result with morphological operations and then apply the modified version 
of the probabilistic FCM for the final results. 

The range of methods proposed in (Militello et al., 2013), (Militello et al., 2015) 
and (Rundo et al., 2016) evolved from region growing with semi-automatic seed 
points through FCM combined with global thresholding and finally back to region 
growing with automatic seed selection by a divide-and-conquer type of search. The 
same authors have also put out two review papers (Militello et al., 2014) and (Rundo 
et al., 2019). 

Both (Yao et al., 2006) and (Khotanlou et al., 2014) discuss and propose the use 
of level sets in the fibroid segmentation. (Yao et al., 2006) starts from a manually 
defined seed points, applies fast marching level sets and refines the result with 
Laplacian level sets. The work by (Khotanlou et al., 2014) is notable for the use of 
ACM-style shape priors. (Kurata et al., 2019) proposed the only known deep learning 
approach by validating a U-Net on a large (n = 122) set of fibroids. 
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3 MATERIALS AND METHODS 

3.1 Materials 

The data collected for this work is presented in Table 1. Our work began with small 
sets of images scanned with the still evolving NBVT modality. The work continued 
with two sets of prototype CBCT images acquired from the manufacturer and a 
dental clinic. The MR-HIFU images were collected from four clinical sites 
participating in the development of the uterine fibroid therapy. 

Table 1. The datasets of this work summarized. 

Pub. n modality notes 

I 3 NBVT Initial dataset with 3 patients. A surface model for the 
mandible was built using 31 independent MRI images. 

II 9 + 4 NBVT A follow-up dataset with 9 dry skulls and 4 patients. 

III 14 CBCT The first CBCT dataset. 

IV 19+30 CBCT Two sets of CBCTs with prototype scanners of two 
different generations, a set from each. 

V 29 MR-
HIFU 

Data collected from 4 sites with a single equipment 
manufacturer. 

3.2 Image processing pipeline 

Solutions to image analysis problems usually consist of more than a single operation 
or an algorithm. The algorithm(s) executing the segmentation usually benefit from 
some sort of pre-processing of the raw image input. The primary motivation for pre-
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processing is in making the data set more uniform. Common pre-processing steps 
include resampling the image to common voxel size, normalization of the intensity 
values according to a common reference and correcting the size, location and 
orientation of the target by affine co-registration. These are often useful operations 
regardless of the chosen segmentation method. The chosen combination of 
operations are typically configured to a series of consecutive steps where one 
operation takes the input from the previous one. This series is commonly as called 
the image processing pipeline. Figure 12 presents an example composite of a pipeline 
that presents a summary key components and task used in this work. 

 

Figure 12. An image processing pipeline. This is an example of a pipeline put together of the typical 
components implemented in this work. 

The following sections present an outline of the development of three major 
versions of the image processing pipeline built for 1) NBVT (mostly Publication I, 
also parts of II and III), 2) CBCT (Publication IV) and MRI (Publication V). These 
are generalizations since all publications present their own solution on the current 
problem. The following sections will present the evolution pipelines during the 
accumulation of more input data and the updated application requirements. 
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3.3 Model building 

Image segmentation can be defined as a problem where a (3D) surface or (2D) 
contour will be fitted on a target. All pipelines implemented in this work include at 
least a subproblem that was formulated this way. The prior information brought to 
the segmentation outside from the current image is generally called as the model. In 
practice the term model can mean various things. In a basic form the model can be 
a single surface drawn on one input image to be fitted on the rest in the dataset. An 
important motivation to build a model is the opportunity to include some 
characteristics of the target shape such as a typical (average) shape (Publications I-
III), the variation of the shape around it and then to penalize the segmentation 
algorithm from trying to conform the surface to abnormal or non-natural shapes 
(Publications IV-V). Some of the influential and early work on fitting contours was 
published (Kass et al., 1988) in ACMs and on the incorporation of shape information 
by (Cootes et al., 1995) in ASMs. A model can also incorporate elements that are not 
part of the input image, such as some frame of reference or a coordinate system 
(Publications I-III). 

Our model building work for the NBVT pipeline (Publication I) began by taking 
an independent set of 31 MRI images of the whole head and drawing the mandible 
manually on all images. This yielded one binary label map per image where a voxel 
was given either label 1 (mandible) or 0 (other). The MRI image set were then co-
registered with a non-rigid deformation algorithm (Rueckert et al., 2003), the 
deformations applied to the label maps and the maps converted to triangular mesh 
surfaces (Lorensen & Cline, 1987). From this set of shapes (meshes) an average 
surface for the mandible created by selecting one mesh as the template and co-
registering the rest on the template before taking the average. This first iteration of 
the model included also an average estimate of the mandibular centerline. The 
centerline was to be deformed along the surface and to provide a simple coordinate 
system where orthogonal slices would later be fitted for visualization. 

The first model was rebuilt and re-aligned using (Umeyama, 1991) from the 
original 31 MRI-based mandibles and a fresh set of mandibles drawn on 9 
independent CT images (Publication II). The updated model now included the 
complete mandible including the condyles (the joints along with the mandible pivots) 
and was of higher resolution (7407 nodes, 14810 triangles). A set of 5 round fiducial 
markers representing the radiopaque landmark pellets that were embedded in the 
bite plate held by the subject in the mouth during NBVT scanning (and thus visible 
in the images) was added to the model. The pellets were used to initialize the model 
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by placing it roughly on the target location and orientation. The new model 
introduced also a division of fixed surface areas of exterior, interior mandible and 
the teeth and condyles (Figure 13). The division to areas was added as we foresaw 
the need of treating these areas differently during segmentation due to anatomical 
variation and varying effect of image artefacts (mostly metal) on different areas. 

 

Figure 13. An average surface model for mandible. Modified from Publication II. © IEEE 2007. 

The image modality was eventually changed from NBVT to CBCT but the target for 
the segmentation remained the same (Publication III). All components except for 
the 5 markers only visible in the newest NBVT images of the prior models were 
retained. The mandible surface model was slightly upgraded by adding the surface 
tangents vectors of the mandible exterior and interior. This was done to test if the 
surface tangents could be used as estimates of the local teeth root orientations. The 
estimates were added to aid visualization and not to be used in the segmentation. 
With this model version we also experimented the use of mandible PCA-based shape 
variation modes according to (Cootes et al., 1995), but we did not end up using them. 
Our decision was based on the assessment that although the modes may have 
improved the results slightly, they add complexity and increase the computational 
time. 

More CBCT images were added to the data set and the segmentation target was 
updated to include also the maxilla and potentially the maxillary sinuses (Publication 
IV). The inclusion of maxilla added more target area and most importantly, more 
shape variation. The image co-registration methods used for the mandible in 
Publications I and II did not yield satisfactory results after the maxilla was included. 
We gained some success by using the multi-atlas method by (Lötjönen et al., 2010) 
but it was deemed too slow even though this it decreased computation times 
dramatically from previously available methods. Due the lack of satisfactory results 
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with multi-atlas segmentation and especially image co-registration, we ended up 
abandoning the approach of using a pre-built surface model. Instead we chose to 
build a data-driven model solely based on the characteristics of the problem, some 
general assumptions of the target and its orientation in the image.  

Our updated goal (Publication IV) now was to segment the exterior of all visible 
facial bones (maxilla, mandible, teeth and zygomatic bones). To accomplish this, we 
decided to try an approach of fitting a mesh that is generated during the 
segmentation. To implement this we devised an approach were potential mesh 
points one soft-tissue to bone edge are searched along a set line profiles. The use of 
line profiles provided us performance gain since only the image voxels on the 
profiles and not in the whole volume need to be evaluated. These line profiles are 
organized to a grid that is fitted (bent) along the contours of the face (Figure 14). 

 

Figure 14. The procedure for fitting a set of line profiles on the facial bones. On the left is the grid in 
the initialized position (a plane splitting at the center of the volume) for the first iteration. 
On the right is the grid after bending along the contours of the face. 

The process of fitting and re-fitting the grid and the line profiles is called as surface 
parameterization (Publication). 

After developing the CBCT segmentation method our focus was shifted to MR-
HIFU and the segmentation target was set to uterine fibroids (Publication V). 
Despite of these differences we decided to test and then to revise the data-driven 
approach developed for CBCT (Publication IV). The change of the target required 
us to switch the surface parameterization topology from an open surface (the bent 
plane) to a closed one (a sphere-like). The fibroid segmentation problem forced us 
to rethink the model initialization. Using an analogy to similar the facial bones 
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segmentation we could have initialized the new model by fitting a sphere to the 
approximate location of the fibroid. However, in the MR-HIFU problem we had an 
extra advantage in the ultrasound sonication treatment plan. This plan is a mandatory 
step in order to perform the treatment. This plan includes a cluster of three-
dimensional coordinates of the focal points (sonication cells) were the ultrasound 
sonication is to be administered. What is even better, the plan includes the shape 
parameters of the sonication cells including size and orientation. This enabled us to 
construct an initial model that is a representation, even though coarse, of the 
treatment volume and thus much of the tumor itself. We created the initial model 
surface from the sonication cells by first rendering them as 3D meshes, wrapping a 
convex hull on the point group (Barber et al., 1996) and inflating the convex hull to 
match the assumed safety margin (10 mm) from the cells to the edge of the tumor 
(Figure 15). 

 

Figure 15. Building of a surface model for the PV segmentation. The model is based on sonication 
cells (a) extracted from the therapy plan. A convex hull is wrapped around the cells (b) and 
expanded (c) according to the safety margins in the treatment protocol. Adapted from 
Publication V. 

Similar to Publication IV, this surface was used for the parameterization and not to 
segment the surface. 
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3.4 Image pre-processing 

The purpose of image pre-processing is to make the set of input images uniform and 
clean by eliminating or normalizing factors that are rather a characteristic of the 
modality, result of the scanning setup or random error and not a property of the 
target. Typical pre-processing steps of this work included resampling to standard 
resolution, suppression of noise and other common image artefacts and 
normalization (equalization) of the gray value distribution and correction of image 
inhomogeneity. 

Selection of the best pre-preprocessing steps usually requires designer expertise 
and may involve heuristics. The selection process is often implemented, as in this 
work, by trial and error by assessing the visual appearance of the result image set and 
monitoring the segmentation algorithm performance and robustness. This step may 
need to be revisited once the properties of the image data are known and the most 
promising candidates for the actual segmentation algorithm have been chosen.  

3.4.1 Image filtering 

Images will practically always contain a component of noise of varying strength. In 
medical imaging the presence of noise usually is due to the tradeoff between 
acquisition time and image quality. In CBCT short acquisitions mean smaller 
exposure to the ionizing x-ray radiation. In MRI fast scan sequences help in 
managing the effect of natural body movement (heartbeat, breathing) on the image 
quality and ease the discomfort of lying in a loud, tightly confined space. These are 
examples of constraints that will set the practical limits on how much information 
can be collected during scanning and thus the amount of noise that need to be 
tolerated during the image reconstruction and pre-processing. Image noise is a 
typical consequence of this uncertainty. 

In Publications IV and V we filtered the images with a Gaussian kernel (Haddad 
& Akansu, 1991) to dampen the noise component in CBCT and MRI. The main 
benefit doing of this is to mitigate the effect of noise on the calculations to find the 
edges during the segmentation. Approaches like nonlocal means (Buades et al., 2005) 
could provide better edge preservation over Gaussian kernels with effective noise 
suppression. However, these were not used in this work because of the their higher 
computational demand limited benefit over the simpler Gaussian method. 
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The other motivation to use Gaussian filtering in Publication V was to reduce 
potential aliasing prior to image resampling. Aliasing errors are not very common 
when resampling images of biological structures. Still, we decided that it is a good 
practice to lowpass filter the images and choose the lower limit of the kernel size 
according to the Nyquist-Shannon theorem (Shannon, 1949) prior resampling. 

3.4.2 Resampling to a uniform grid 

Resampling the image data to a common-sized voxel grid may not be a requirement, 
but is often done for convenience. An isotropic (equally spaced) voxel grid is useful 
in image co-registration and surface model fitting tasks. For example, it simplifies 
the affine transformations (translation, rotation, scaling, shear) to align the model to 
the target (Publications I to III). Our raw data in the NBVT and CBCT pipelines 
(Publications I to IV) was reconstructed to an isotropic voxel grid by default and 
instead of image resampling, the model was simply scaled according to the voxel 
size. Our MRI data (Publication V) was not isotropic, so resampling with trilinear 
interpolation was used. 

3.4.3 Equalization 

Artefacts are distortions that appear in the image even though they do not exist in 
the real target. Image artefacts can be a result of the image reconstruction, induced 
by interfering objects somewhere in the scanner FOV or be a property of the 
scanning setup. Reconstruction artefacts can appear due to global lack of 
information such as not having the target scanned from all orientations (NBVT, in 
Publications I and II), local lack of information due to dense objects such as metal 
completely blocking the x-rays from reaching the detector and thus information 
getting lost (CBCT, Publications III and IV) or by x-ray beam hardening and scatter 
(CBCT, Publications III and IV). In MRI, the images may suffer a from non-
homogeneous magnetic field in the scanner (Publication V). In the images in this 
work the reconstruction artefacts appear as ghosting (NBVT), metal artefacts as 
sharp streaks (NBVT, CBCT) and the inhomogeneity artefact as smooth and low-
frequency variations in image intensity (MRI). Some of our CBCT and to a lesser 
extent the MRI data was probably affected by patient movement. 

Our general strategy of dealing with the artefacts was less to filter them out by 
preprocessing and more to tolerate them in the segmentation. This most prominent 
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example of this is the patch-based segmentation strategy in Publication IV where the 
CBCT image data had a high prevalence of metal artefacts (present in 67% of the 
images). In Publication II we reduced the NBVT ghosting by normalizing with 
contrast limited adaptive histogram equalization (CLAHE) (Pizer et al., 1990) (Figure 
16). 

 

Figure 16. Coronal NBVT images before (left) and after (right) contrast enhancing local adaptive 
histogram equalization in NBVT. From Publication II. © IEEE 2007. 

Although not able to remove the ghosting completely, the visual image quality was 
improved. The inhomogeneity artefacts that appeared in some of the larger MRI 
image FOVs in Publication V were preprocessed with a bias field inhomogeneity 
correction (Tustison et al., 2010). This was necessary since the thresholding 
algorithms tested in the MR-HIFU pipeline would not have worked consistently with 
this kind of artefact. 

3.4.4 Thresholding 

One of the simplest ways of segmenting an image is to select one or more thresholds 
and label the image voxels according to which intensity range as defined by the 
thresholds they fall. Global thresholding, selecting fixed thresholds for the whole 
image, rarely works as the only segmentation strategy but can be useful, even 
effective when used in the right context and combined with suitable type of pre- and 
post-processing. 
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We used global thresholding and morphological operations in Publication I to 
reveal and pre-process the edges (Figure 17) prior to generating distance maps later 
in the NBVT pipeline. 

 

Figure 17. Raw NBVT image (left) is thresholded (right) to reveal the edges in the image. A cross 
section of the mandibular model (a gray, U-shaped contour) in its starting position prior to 
transformations is visible in the images. From Publication I. © IEEE 2006. 

The initialization of CBCT pipeline in Publication IV needed the approximate 
intensity ranges of the soft tissue and bone. The thresholds for these were estimated 
by the direct clustering (DC) method (Pianykh, 2006). The natural division of the 
CBCT image intensities was to four classes. By this division the assumed classes were 
(from darkest to brightest) air, soft tissue, bone and tooth enamel combined with 
metal. Only the ranges for the soft tissue and bone were used. While this method 
would have not been robust enough to work as a standalone CBCT bone 
segmentation method, it was good enough to give the starting point to the 
segmentation algorithm. 

3.5 Segmentation 

It is often convenient to formulate the image segmentation algorithm as an 
optimization problem. By doing this the wealth of theories and methods developed 
for general optimization can be utilized. In very general terms optimization can be 
defined as a task of finding a minimum of a continuous function given the input and 
a set of constraints. This function can be interpreted to estimate the energy of a 
system and the task of the optimizer is to search where the system is at its most 



 

32 

efficient state. For segmentation problems the energy function can be set to describe 
how well a surface fits on the target and the optimizer is used to find a set of 
deformations to acquire the best possible fit. 

A popular (Kass et al., 1988), (Lötjönen et al., 1999), (Tohka, 2003), high-level 
definition of the energy function Etotal, consist two of terms, Eint and Eext  that are 
summed for the minimization problem 

+,-�����. /01023 � � 4/��� 5�670 $ �8 � �4�/���9:0 (6) 

The external energy component Eext measures the goodness of fit of the surface S 
of the target in the input image I. An internal energy component Eint is usually 
required to penalize the optimizer from converging to unnatural or unpractical 
shapes. A weighing term � � [0,1] can be seen as hyperparameter that can be trained 
with a set of segmented images. The weigh � can also be used to prefer certain 
properties of the output, such as surface smoothness, depending on the end 
application.  

Segmentation problems may contain a large number of parameters, for example 
coordinates of a node points in a surface mesh. This will easily lead to very high-
dimensional spaces unless some strategy to move larger groups of nodes 
simultaneously is adopted. Publications I to III use a combination of affine (rotation, 
scaling and translation) that move all model points simultaneously to initialize the 
model. Skewing, also a degree of freedom of affine transformations, was not used 
here. 

Designing an energy function where there can be a well-defined, guaranteed 
global minimum would be hard. There are optimizers that are guaranteed to find the 
global minimum under certain constraints (Kirkpatrick et al., 1983), (Jones et al., 
1993), but these are often expensive to solve. The affine initializations used in 
Publications I to III also help in ensuring that grid search over the limited set remains 
computationally efficient and a fair approximation of the global minimum can be 
made. A hyperparameter tuning strategy such as Bayesian optimization could work 
as well. However, the feasibility such black box function estimators may be limited 
because the smoothness or the continuity of the underlying energy function may not 
be guaranteed. The affine initialization forms a good starting point for more flexible, 
and free-form deformation can be used later to better conform to individual shapes. 
The results of the segmentation with the affine initialization and after the free-form 
deformation were presented in Publications I and II separately to help in showing 
the benefits of using free-form deformations. 
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3.5.1 NBVT pipeline 

Our very first method for the mandibular segmentation was developed with a small 
set (n = 3) of NBVT images (Publication I). This approach followed the principles 
of ACMs (Kass et al., 1988) and much of the implementation was adapted from 
(Lötjönen et al., 1999). 

The NBVT segmentation pipeline was initialized by first segmenting the bone 
with a fixed global threshold. The images contained a lot of false edges due to 
reconstruction artefacts which were suppressed from the thresholded bone label 
image with two morphological openings. After thresholding, a surface model for the 
mandible was fitted to the image. The fitting was implemented by constructing six 
distance maps D of the binary bone label according to (Lötjönen et al., 1999). The 
distance maps match the six principal orientations of the image volume coordinates 
(up, down, left, right, back and forward). The values for respective maps are 
computed by first estimating the three-dimensional orientations of the exterior 
normals of the edges in the bone labels. For example. the distance map “right” only 
includes distances to edges whose principal orientation of the exterior normal is to 
the right. All other five edge orientations are invisible in this map. This way were 
able to pull the mesh nodes of the surface model that point primarily to an 
orientation towards edges in the bone label map have normals primarily in the same 
orientation (Figure 18). 

 

Figure 18. Distance maps from a thresholded image. The distance maps (a,c) are generated from 
edges of the binary bone label image (b). The maps are generated for all six principal 
orientations of which the figure shows examples of the “left” (a) and “right” (c) orientations. 
The left side (in blue) of the surface model is moved towards the edges in left visible in (a) 
and the right side (in red) to (c). Modified from Publication I. © IEEE 2006. 

The maps were then used to make a pre-determined series of affine (rigid) 
transformations (rotations, translation and scaling) to fit the average surface model 
(section 3.3) according to 
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where N is the number of mesh nodes in the model, i the index of the node, k(i) � 
[1,6] a function that selects the distance map D that best matches the primary 
orientation of the exterior normal vector of the node. Once the affine phase was 
complete there should have been an approximate fit of the model to the target.  

The affine transformations are usually too stiff to converge the surface to fine 
individual shapes. In order to get a better a fit, a series of non-rigid deformations 
were needed. These were implemented with 

=��>? � � @� 5��� $>�AB��@C  (8) 
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where Eext(ffd) approximates the fit of the mesh surface to the original image and 
Eint(ffd) penalizes from the surface nodes from deviating too far from the normal 
orientation. ni and ni* are the unit surface normals of node i at current and previous 
iterations, I is the input image, h the surface normal length parameter, Nnh(i)  the set 
of nodes in the neighborhood of node i and di.k and di.k* the current and previous 
displacements of the node vectors. The nodes of the surface model mesh were 
displaced according a deformable, multiresolution grid (Lötjönen et al., 1999) and 
iterated to convergence. 

A new set of data and slightly updated versions of the energy function 
components were introduced (Publication II). The affine fitting of the surface model 
with distance maps (Eq. 7) was dropped and based on fiducial markers (radiopaque 
pellets) that were detected from the image instead. The marker coordinates were 
detected by the image reconstruction software independent from the segmentation 
pipeline. The overall pipeline was kept the same including the use of FFD 
deformations. After the FFD phase a new elastic smoothing component for the node 
displacements, according to 

KO � PQR )� ��L?�S�T�UT *�B� (11) 
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was introduced (Lötjönen & Mäkelä, 2001). This updates the displacements dk 
around node pk according to displacements d of arbitrary nodes pi along their normal 
ni. 

Later, this same segmentation method was application for CBCT images 
(Publication III). Despite the change of the underlying modality, the goal still was to 
segment the mandible. Eventually only minor tweaks for the pipeline (of Publication 
II) were required. The affine initialization was re-introduced since there were no 
fiducial markers in CBCT. Some heuristics was also added in the handling of the 
energy function output to better cope with metal artefacts. These were more 
common and increasingly severe in the CBCT dataset. Heuristics also helped in 
handling the shape variability in the tooth region that was much less visible in the 
NBVT image sets. Since there is much closer similarity between the segmentation 
methods in Publications II and III than there is between III and IV, this final 
evolution of the pipeline is still bundled to the “NBVT” category in the context of 
this work despite of the underlying imaging modality. The main goal of the 
Publication III was to demonstrate the use of segmentation in automatic 
synthetization of panoramic and orthogonal views that are based on individual 
anatomy and thus not much effort was put in improving the actual quantitative 
segmentation results. Although the segmentation pipeline did almost completely 
change by Publication IV, the ideas gained when designing the rendering geometry 
for the panoramic view synthetization would be a major part on how the facial 
geometry was parameterized in the CBCT pipeline that was to follow. 

3.5.2 CBCT pipeline 

A new CBCT dataset (n = 49) and a revised goal to segment also the mandible was 
introduced by Publication IV. The target was now to set to segment all of the exterior 
of the facial bones (including mandible maxilla and the zygomatic bones) that were 
visible in the available FOVs. After unsatisfactory results of experiments with 
extending the NBVT surface model and segmentation pipeline to the maxilla and 
attempts of applying multi-atlas segmentation a novel, data-driven approach was 
developed mostly from scratch. 

The CBCT pipeline began by filtering the raw images with a Gaussian kernel to 
suppress noise and pre-segmenting the filtered images with direct clustering 
(Pianykh, 2006) to get initial, rough estimates of the intensity ranges of target (bone) 
and surroundings (soft tissue). The CBCT images suffered from a common 
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inhomogeneity artefact, a wide, smooth, higher intensity (bright) areas on the 
borders of the cylinder-shaped FOV where bone touches the border. The effect of 
this artefact was mitigated by removing a thin rim of the outer edge of the 
reconstruction cylinder prior to the direct clustering.  

The novelty of the CBCT pipeline is in the definition of the segmentation 
problem. The ideas on how the panoramic views were rendered in Publication III 
were now applied for use in segmentation. When generating the views, the mandible 
was effectively pulled straight along the mandibular centerline included in the fitted 
model. The views were then rendered by summing voxels along the line segments 
aligned according to the normal orientation of the centerline of specified depth. The 
CBCT pipeline uses this analogy, but the line segments were now exploited to search 
potential points on bone-soft tissue edge for the eventual surface reconstruction 
instead of summing pixels for viewing. This allowed us to use an active contour 
model -like energy function but limit the computational cost by computing the values 
on only on voxels that cross with the segments. Publication IV calls this process arc 
length parameterization, but effectively this means bending a plane with a line 
segments placed equally in a grid on the face (Figure 14). No pre-built model and 
thus no mandibular centerline are used in the pipeline, so by a slight modification 
the bend is now fitted along the surface points detected during the previous iteration 
(Figure 19). 
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Figure 19. Parameterization of the topology. Parameterization bends a plane (left) along a curved 
arc. This bending is shown from another perspective in Figure 14. The colored dots (right) 
signify good point candidates from the best (red) to second best (green) and third best 
(blue). Symbols i,j and i’, j’ denote the coordinate pairs before and after (´) 
parameterization. From Publication IV. 

At the first iteration when no edge points yet exist, the parameterization plane is set 
to middle of the volume. The tip the of chin, the parts of zygomatic bones are usually 
the first areas to get segmented and these areas extend further during subsequent 
iterations. 

The parameterization defines the search space of voxels that are estimated with 

/670��:1D6� � + V �WL�)XYZ[[\ *
� 8V $ ] ^.��L�CFBL��?�.#�L� &�.YZ[[ ^ $ _ ^8 � `ab? )WL� FBL��WL�* �^ (12) 

for edge energy. There gi is the image gradient at voxel I, Idiff is the mean intensity 
difference between DC-clustering labeled voxels for the bone and soft tissue, r the 
radius of the Gaussian kernel and a, b and c weight parameters to be learned from 
the training set. The energy function favors points that have a strong gradient (term 
a), have an intensity drop similar to estimated drop from bone to soft tissue (term b) 
and have gradient orientation close to the normal orientation ni of the parameterized 
point pi (term c). The estimation of Eext(node) along a line profile is illustrated in Figure 
20. 
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Figure 20. Energy minimization. Points of low energy (around j’=-5 and j’=10) correspond to high 
intensity gradients (left). These match the bone to soft tissue edges on image (right). From 
Publication IV. 

Three potential edge points on the voxels of lowest energy per line segment are 
selected (Figure 19). In the following step the edge points of neighboring segments 
are connected with triangles and Eext(node), estimated for all voxels that cross the 
triangles and the average is taken. Triangles that have the minimum energy are 
retained and those that exceed threshold energy are discarded. This step should be 
able to grow patches of connected surfaces where areas of consistent edges exist in 
the image (Figure 21). 

 

Figure 21. Surface patches covering the facial bones before merging. From Publication IV. 

The result of the patch growing step is a surface that contains holes and 
discontinuities. These can be due to natural openings of the skull such as nose holes, 
missing teeth, mouth being open or image corruption from metal artefacts. These 
patches are connected by taking the largest patch in size and connecting all non-
overlapping patches from largest to smallest. This step yields a surface that connects 
a maximum of one node per line segment. The resulting surface follows the 
minimum energy accurately but the holes remain. A standard thin-plate spline with 
smoothing 
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is used to interpolate over the holes and to the give the surface smoother appearance 
(Figure 22). A thin plate function is a weighted combination of the error sum term 
between the minimizer f and the smoothing term R(f) typically composed of partial 
derivates of f (Bookstein, 1989). 

 

Figure 22. The facial bones after merging (foreground) and thin plate spline smoothing (background). 
From Publication IV. 

This idea of using a spline is similar to what was presented by (Ahmad et al., 2012) 
although developed independently. 

3.5.3 MR-HIFU pipeline 

The motivation for building the MR-HIFU pipeline was born in a research setting 
independent from the previous works. However, the problems of segmenting facial 
bones in CBCTs and Gadolinium-contrasted PVs (the tumors) in MRIs have one 
common property: we want to find edges that drop from bright to dark. This enabled 
us to exploit much of the work put in for the NBVT and CBCT pipelines for the 
MR-HIFU. 

The CBCT pipeline required a parameterization to fix the frame of reference 
where the segmentation was to be carried out. It used a simple, open surface (plane) 
bent along the shape of the face. This same approach would not work with PV for 
two reasons, it can take unpredictable shapes and it is, at least to some extent, 
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attached to the healthy organ. This means that the exterior shape of the PV is closer 
to a closed, sphere-like topology (genus-0) than an open surface. This lead us to 
change the strategy from the planar arc-length parameterization used for the facial 
bones to spherical parameterization presented in (Brechbühler et al., 1995), (Székely 
et al., 1996) and (Shen & Davatzikos, 2000). 

Apart from the parameterization strategy, the base elements from the CBCT 
pipeline for segmenting the PV were kept the same. The energy function was 
simplified to 

W��C � h5��� $ A F B�� (14) 
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with the Eint component dropped altogether. Eext(hifu)  is simply the sum of the dot 
products of the image gradient gi,0 and mesh normal vector ni at node i. With this 
change the PV segmentation relied more in the spline smoothing step to keep the 
parameterization consistent through iterations. 

Solving the PV segmentation was only a part of the whole MR-HIFU problem. 
Segmenting the NPV was equally, if not more important. The PV segmentation 
provided a convenient mask inside which the binary PV vs. NPV segmentation could 
be performed. After benchmarking a number of candidates we ended up using EM-
segmentation (Moon, 1996), (Van Leemput et al., 1999) for solving the bulk binary 
classification and Markov Random-Fields (MRFs) (Van Leemput et al., 1999), (Salli 
et al., 2001) to refine the segmentation result locally. 

The EM/MRF segmentation yielded a binary classification that sometimes 
revealed imperfections in the original PV segmentation. These appeared in areas 
where the dark tissue type penetrated the PV, such has blood veins, the necrosis 
puncturing the tumor edge or imperfect (secondary) Gadolinium perfusion due to 
image timing inaccuracies. These imperfections would show as NPV leaks outside 
binary PV containment. As a final step of the segmentation pipeline these leaks were 
capped by running the same PV segmentation once more with the original PV 
surface as starting point on the binary PV vs. NPV mask. 
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4 RESULTS 

Our algorithms were optimized to minimize the mean squared distance from the 
produced segmentation against a given reference. Were able to reach 0.32 � 0.65 (avg 
� std) mm mean MSD for the NBVT (Publication II) and 0.50 � 1.01 mm for the 
CBCT (Publication IV) pipelines against manually drawn surfaces. The CBCT 
pipeline was also able to reach 92% mean coverage of the nodes in reference surface 
meshes with under a minute mean execution time per volume. 

Two summary tables of results were collected from the studies reviewed in 
section 2.4.1. The studies in Table 2 use either cone- or narrow beam imaging, target 
mandible, maxilla or both and report an MSD metric for their results. These criteria 
make the results in the table a natural comparison against Publications I- IV. Studies 
that present relevant methodology but use either CT or report only Dice similarity 
coefficient (DSC) are in Table 3. Thus the results summarized in this table are harder 
to compare against Publications I- IV but since they present some of the latest 
advances in the field, they are included for reference. The results in Table 2 that have 
reported MSD are also presented visually in a timeline in Figure 23. It should be 
noted that the precise definition on the MSD is not uniform between the reference 
articles but include an interpretation of average error between the target and 
reference in millimeters. 

The reviewed articles typically estimate the MSD per sample and give the mean 
and standard deviation over the entire dataset and sometimes for a subset held out 
for the validation. In Table 2. the MSDs for the whole data was because of its better 
availability. The median is used in comparisons over publications. It was chosen over 
mean to mitigate the effect of outliers in the comparisons. 

Our results compare well against the reviewed literature. The achieved MSDs of 
0.32 mm for the mandible and 0.50 mm for the facial bones fall in line of what has 
been reported. The result of 0.32 mm (NVBT) is below the median of 0.5 mm 
(results in Table 2 for targets that do not include the maxilla). The of result 0.5 mm 
(CBCT) is above for the median of 0.25 mm (results in Table 2 that include both 
mandible and maxilla). The median MSD for all studies Table 2 excluding our work 
is 0.42 mm.
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Figure 23. Progression of the dental segmentation error over time in reviewed literature. All authors 
have not provided the standard deviation of their reported error. The standard deviation is 
drawn as an upper whisker to the bar when available. 

By only looking at the median error, the methods that segment only mandible 
(median of 0.5 mm) appears to be less accurate than methods that target both 
mandible and maxilla (median of 0.25 mm). This is counterintuitive since maxilla 
should be a more difficult target. A possible explanation for this is that the methods 
that target both are newer and benefit from later methodology and improved image 
quality. However, there are only four studies (Chang et al., 2013, Publication IV, 
Minnema et al., 2019 and Vaitiekūnas et al., 2019) that target both mandible and 
maxilla. The work by (Vaitiekūnas et al., 2019) appears to be an outlier with a MSD 
of only 0.057 mm. 

Of the studies in Table 3. one could note the works by (Zhang et al., 2017) and 
(Torosdagli et al., 2019) for their larger than average sample sets (n =107 and n = 
98) and accurate results (DSCs of 0.93 and 0.94). 

Objective comparisons between mandibular segmentation algorithms are 
complicated by fact that all of them were tested and validated on proprietary datasets. 
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Very few of the reviewed studies characterize the factors affecting the dataset image 
quality, mostly metal artefacts and the numbers and of types and pathologies in the 
samples. Exceptions of this are (Publication IV), (Minnema et al., 2019) and 
(Torosdagli et al., 2019). Table 2 also shows that studies with CBCT were done with 
relatively small datasets. The median sample size over all publications is a rather 
modest n = 23 with only (Kainmueller et al., 2009) and (Abdolali et al., 2017) 
exceeding the n > 100 mark. 

Our MR-HIFU pipeline achieved the DSC error of 0.88. The review of the 
literature revealed only nine other original papers discussing the uterine fibroid 
segmentation. The DSC errors segmentation in these papers range from 0.80 in 
(Fallahi et al., 2011) to 0.88 (Militello et al., 2015). Our result of 0.88 is not directly 
comparable with the other work since it was estimated for the post-operative, non-
perfused volume while the other studies typically report the result for the whole 
uterus including the tumor if present. Based on the literature review, Publication V 
is the only a method with results for the non-perfused volume segmentation. The 
mean execution time for the MR-HIFU pipeline was 1.6 minutes per volume. 

It can be noted that the most accurate result (Militello et al., 2015) of DSC 0.88 
in the review was validated with a rather small, n=15 dataset. The study by (Kurata 
et al., 2019) reported DSCs of 0.84 (subjects with a disease) and 0.78 (healthy 
subjects) with an n = 122 sized dataset. 
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5 DISCUSSION 

In this work we developed segmentation methods for facial bones and uterine 
fibroids. The planned use for these was in clinical workflows of planning implants 
and updating MR-HIFU treatment plans during the therapy. Any segmentation 
method considered to be deployed in such a demanding environment needs to be 
robust and computationally efficient. Robustness is necessary to ensure the overall 
reliability of the results acquired with the method. A robust method is also less prone 
to breaking on images with artefacts or other factors degrading the quality. Better 
robustness adds value to the implant workflow by reducing the need for performing 
the planning steps on poor quality images manually. Computational efficiency speeds 
up the implant workflow that is still largely interactive. When less time is spent 
waiting for segmentations to complete, more operator time can be invested 
elsewhere. Real-time performance is much desired in MR-HIFU since the result is 
needed in guiding the therapy while the patient is sedated and positioned on the 
device. 

The requirement for robustness was addressed early in the design by developing 
methods that are able to tolerate noise and piece together surfaces in images 
suffering from metal and inhomogeneity artefacts. The robustness was tested by 
validating the results on independent test sets (Publication IV and Publication V) 
More, the segmentation targets may only consist only partial and thus discontinuing 
edges. These are characteristic properties of both cone-beam computed tomography 
used in imaging facial bones and magnetic resonance imaging used for fibroids. The 
performance requirement was managed by selecting and developing segmentation 
pipeline components capable of completing rather in seconds than minutes. Our 
CBCT pipeline reached an s under minute and the MR-HIFU slightly over minute 
average execution times from start to finish even in their non-optimized 
implementation and using ordinary desktop computer hardware. Even though an 
early decision was made to concentrate only to fast algorithms, the CBCT pipeline 
was to maintain a similar accuracy of 0.50 mm of mean squared distance error against 
0.42 mm to methods in the reviewed literature including the latest in the field. 
Thorough comparisons of the accuracy could not be made for MR-HIFU since it 
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remains the only known method on segmenting necrosed, non-perfused volumes of 
uterine fibroids. 

The development and validation of image segmentation methods are a function 
of and constrained by the availability and properties of the input data. This is 
especially true with modalities that use x-rays, where bone segmentation from clean, 
artefact-free images can be almost trivial and again extremely difficult in the presence 
of artefacts. This might partly explain why the complexity of the proposed solutions 
for dental image segmentation range from selecting a single, global threshold (Miet 
Loubele et al., 2006) to training a deep learning neural network of 37 million 
parameters (Minnema et al., 2019). Thresholding has again been suggested as late as 
2019 (Vaitiekūnas et al., 2019). Only very few of the articles reviewed for this work 
actually describe the state, type and prevalence of the quality issues in the input data. 
Based on the wide variety of the solutions proposed, it could be speculated that there 
is significant variation in both data contents and quality. The main trends in medical 
image segmentation from active contour models through multi-atlas methods to 
deep learning are apparent in the CBCT domain as well. Also, CBCT is a still an 
evolving modality. Advances in improving the image quality have been achieved to 
this day and are likely still to be made. 

The success or failure of our and similar segmentation methods depend heavily 
on how the energy function that is used to drive the algorithm towards better 
accuracy is defined. The form of the functions developed for the subproblems in 
this this work are a result of going through iterations of collecting ideas, 
implementations, experimentation and going back to collect better ideas. At the same 
time more data was collected and even modalities were changed along the way. Even 
of the development of the energy functions is done thoroughly, it is mostly a product 
of the designer and less is learned from the data directly. In this work the 
development process was successful in producing simple, generalizable and 
explainable methods. When the input sample sites like ours are rather small it is also 
quite natural to give more influence on the designer. However, when the image 
sample sets grow to hundreds let alone thousands, the performance of methods 
designed this way start to eventually stagnate. 

A good part of the emergence of deep learning (Lecun et al., 2015) as the 
dominant family of methods for image analysis and machine learning in general can 
been attributed to the availability of massive datasets such has ImageNet 
(Russakovsky et al., 2015) and the associated competition-form challenges. One very 
desirable property of deep learning for medical image analysis (Shen et al., 2017) is 
that it takes the burden of writing the energy function and engineering its input 
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features away from the designer. Methods of deep learning are in a good position to 
utilize the massive accumulation of image data by training larger models that should 
be more capable capturing the variation in the data. Despite these benefits the neural 
networks still require the designer to make decisions on items such as pre-processing, 
network topology and the loss function. These necessary components of the image 
processing pipeline are hard to integrate as trainable hyperparameters. Deep learning 
networks are still computationally expensive to train and hardware that can handle 
large models of high-resolution volumetric images can carry a significant investment 
cost. Deep networks can also get distracted by changes in the image collection 
protocol or other due to other variations (Der Sarkissian et al., 2019). A classic 
example of this to train on a large, public domain data set and test on smaller set 
drawn from another distribution (Mårtensson et al., 2020) such as hospital’s own, 
proprietary data. There are means to combat this (Fang et al., 2020), but they require 
that problem is first recognized and then addressed. There are convincing examples 
of transfer learning, from the capability of an algorithm to be trained in a non-
medical domain to be successfully used on medical images (Raghu et al., 2019). 
Scanning protocols are still very much derived from the needs of (individual) 
consulting radiologists and not standardized for a machine learning algorithm. This 
will probably remain so in the near future. Therefore, the algorithms will be also 
required to adapt to different domains. 

Despite the dominance of deep learning in a wide spectrum of image 
classification and segmentation problems they have been proposed for dental CBCT 
only quite recently (Zhang et al., 2017), (Torosdagli et al., 2019), (Minnema et al., 
2019). The reason for this late onset might be in part due to the sparsity of annotated, 
generally good quality and public datasets with well specified protocols in decent 
sizes. Collecting sufficiently large CBCT data sets is hard because it is not possible 
to expose healthy volunteers to ionizing radiation and a full anonymization of 
patients from tomographic scans of the facial structures is not generally possible. 
There are remarkably well working methods to synthesize data including generative 
adversarial networks (GANs) (Karras et al., 2018) but no coordinated effort to use 
them to generate simulated training sets for dental volumetric imaging appears to 
have been made. 

The literature review revealed many indications of the benefits of deep learning 
in CBCT segmentation. The validation work (Minnema et al., 2019) suggest that 
convolutional neural networks (CNNs) perform better than active contour models 
on metal artefact corrupted data. The margin is small but significant. The adoption 
of CNNs by (Zhang et al., 2017) over their multi-atlas method (Wang et al., 2016) 
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brought accuracy gains as well. Finally, the thorough validation of (Torosdagli et al., 
2019) on data specifically selected to contain samples of subjects with facial 
deformities with good results is strong argument for the flexibility of deep learning. 
These results combined suggest that CNNs are currently the best performing 
strategy for mandibular and maxillary CBCT segmentation. 

By their definition, CNNs use convolutional kernels for extracting the primitive 
characteristics of shapes for the purpose of classifying objects in images. An example 
this is the very popular U-net (Ronneberger et al., 2015). All of the end results 
presented in this work can be derived from convolutions but this is possibly only 
indirectly. The kernels work best for a data that is presented in a fixed geometry such 
as an image voxel coordinate grid and worse, or not at all, in a deforming topology 
such as surface mesh. Thus convolutions are not inherently good in fitting surfaces. 

To solve the surface fitting problem in its native from with deep learning would 
require departure from the Euclidean voxel grid to a space that is somehow 
parameterized. Segmentations in parameterized spaces were used extensively also in 
this work. A move away from the Euclidean space probably require abandoning the 
traditional formulation of the convolutions as well. A fairly recent introduction of 
geometric deep learning by (Bronstein et al., 2017) or more generally the graph neural 
networks (Wu et al., 2020) could provide some of the necessary tools for this. Some 
of the published works provide accurate characterization of shapes for the 
classification (Fey et al., 2018) and segmentation to sub-meshes (Boscaini & Poiesi, 
2019). These ideas were used in the research by (Zhang et al., 2017) and especially 
(Torosdagli et al., 2019) although they handle the segmentation and the surface 
characterization problems separately. Graph networks could also solve a potential 
weakness in how the CBCT and MR-HIFU pipelines would maintain the integrity 
of the parameterized space throughout iterations. 

What appears to be still largely unstudied, is how to best embed or encode the 
properties of the image intensities on surrounding the surface mesh with a deep 
network. One potential approach would be to learn the facial shape correspondences 
with anisotropic convolutional networks (Boscaini et al., 2016) and embed the 
grayscale intensities in regular convolutions along corresponding shapes. To solve 
this problem efficiently and with a feasibly sized network with relatively sparse 
availability of annotated input data is no easy task. This approach would also require 
solving the same point correspondence problems that largely forced us to abandon 
the multi-atlas segmentation approach attempted prior to the patch-based CBCT 
pipeline development. 
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6 CONCLUSION 

This work presented segmentation methods for facial bones and muscle tumors. 
These methods were designed to produce accurate surface reconstructions and since 
intended for clinical workflow they were built to be both robust and fast. We were 
able to develop methods that matched the accuracy of published methods for similar 
targets. This work demonstrates the usefulness of simple and generic ideas with 
explainable methodology that can cross application domains. 
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MODEL-BASED SEGMENTATION OF RECONSTRUCTED DENTAL X-RAY VOLUMES 
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2.1. Volumetric data and acquisition 

2.2. Model construction 



Fig. 1. The average mandible model surface. The ROI 

model, here the left distal section, extracted from the 

average model is shaded in dark gray. A typical coronal 

slice, (x,y) plane, (Fig. 2a) is marked with a dark square. 
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Fig. 2. (a) A coronal slice from a grayscale and (b) the corresponding binary volume taken from the left distal section. 

Distance maps oriented along (c) negative and (d) positive x-axis computed from the binary volume (b). A contour of 

the ROI model in its initial position is shown in dark outline. 

Fig. 3. A flowchart of the phases of the model-based segmentation method presented in section 2. 

3. RESULTS

Table 1. The results of computing the distances (mm) 

from the manually segmented surfaces to surfaces after 

affine transformation (aff) and deformation (nrg) 

phases. 

4. DISCUSSION AND CONCLUSIONS



Fig. 4. The results of the segmentation. Three example slices (in rows) were selected 

from three data samples (a,b,c), (d,e,f) and (g,h,i). Initial position of the ROI model 

is marked with a dark outline while the final surface is marked white. 

Fig. 5. (a) An axial slice of a 

volume and (b) the orthogonal 

slice corresponding to the 

middle point of the registered 

bone centerline. In (a) the 

centerline is the thick vertical 

line and the thin horizontal 

line orthogonal to it illustrates 

the orientation of the 

orthogonal slice. 
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ABSTRACT

A 3-D reconstruction from sparse limited-angle x-ray projection data
is a useful compromise between a single radiograph and a full CT
reconstruction, e.g. in dental imaging. The segmentation of such
volumes is desirable for clinical applications such as implantology,
but the task is complicated by the inherent limited spatial validity of
the reconstructions. We present an automatic model-based method
for extracting the mandible from 3-D limited-angle dental x-ray re-
constructions. The process includes enhancing the reconstruction,
estimating the successfully reconstructed mandibular area, and the
actual segmentation process. The results with 13 reconstructions are
good with an average segmentation error of 0.32 mm.

Keywords: Image segmentation, X-ray tomography

1. INTRODUCTION

The reconstruction of limited-angle projection data is an ill-posed
problem and prone to errors. Despite its shortcomings, limited-angle
tomography (LAT) has interesting applications, e.g., in dental x-ray
imaging as a low-dose and low-cost 3-D imaging modality [1]. One
of the applications benefiting from a 3-D image is implantology [2].

To make the most of a dental LAT reconstruction, extracting the
mandible is essential: it enables specific image enhancement within
the mandible to improve the identification of internal features such
as the mandibular canal. However, the scarce projection data causes
artifacts and limits the spatial validity of a LAT reconstruction as
illustrated by Fig. 1(b)—the reconstruction is not valid in the incisor
(top) region, where the mandible curvature exceeds the angle of view
(AOV). This complicates the segmentation of such reconstructions.

Deformable models have been successfully used in several seg-
mentation applications, but such methods cannot cope with the lim-
ited spatial validity of LAT reconstructions. As one solution, the
direct use of limited-angle sinogram data for segmentation has been
suggested [3]. We propose the use of a standard global deformable
model adapted to the local LAT reconstruction based on the model
shape and the projection angles.

In this paper we present a method for extracting the mandible
from dental x-ray LAT reconstructions. In Sect. 2.3 we introduce our

∗The research was supported by TEKES, the National Technology Agency
of Finland.

(a) (b)

Fig. 1. An example of the limited validity of a LAT reconstruction:
(a) is an axial cross section of a CT volume of a dry mandible and
(b) is the LAT equivalent with the AOV overlaid in black.

mandible model, and based on it, in Sect. 2.4 propose a method for
estimating the valid region of the reconstruction suitable for segmen-
tation. Then, in Sect. 2.5 we present a filtering process for reducing
artifacts and improving contrast in the reconstruction. Finally, in
Sects. 2.6–3 we present an automatic segmentation process and the
results of applying it on a set of 13 reconstructions.

2. MATERIAL AND METHODS

2.1. Limited-angle tomography reconstructions

Our image material consisted of 13 LAT reconstructions courtesy of
PaloDEx Group Oy (Tuusula, Finland). Nine of these represented
dry human mandibles (bone and teeth, no other tissues) and four
represented volunteer patients. For each reconstruction 11 projec-
tions were acquired at an interval of approximately 4–5◦ using an
Instrumentarium Orthopantomograph R© OP200 D dental x-ray de-
vice. A bite plate with 5 embedded pellets was used for patient posi-
tioning. The pellets were cast in a U-shape and served as radiopaque
landmarks in the projections. A 16-bit 256 × 256 × 256 gray scale
volume was reconstructed from the projections using a modified al-
gebraic reconstruction technique (ART). The volumes covered a 60
× 60 × 60 mm3 mandibular region (voxel size 0.23 mm). Six imag-
ing sections were used to cover the entire mandible corresponding to
left and right incisor, premolar, and molar regions.



Fig. 2. A flowchart of the segmentation process. Parameters (a) are
the 3-D coordinates of the pellets and the mandible section, and (b)
the projection angles.

2.2. Overview of the segmentation process

Our segmentation method is presented as a flowchart in Fig. 2 and
briefly described here. Before the segmentation, we perform a filter-
ing on the reconstruction according to Sect. 2.5 to reduce artifacts
and improve contrast. Then we use the landmark pellets to roughly
register our mandible surface model to the reconstruction, and based
on the mandible section (right / left, incisor / premolar / molar) we
crop our model to crudely match the region of interest. Then we
perform an affine alignment process during which we refine the esti-
mate of the validly reconstructed region using the projection angles,
as described in Sects. 2.4 and 2.7. Finally, we perform an elastic
transformation in two stages according to Sect. 2.8. The result is a
surface segment estimating the validly reconstructed region of the
mandibular outline.

The segmentation method was implemented in MATLAB. The
parameters of the transformations were optimized in bounded search
spaces using simplex optimization to minimize the energy measure
presented in Sect. 2.6.

2.3. Mandible model

To construct a mandible surface model, the mandible was manually
extracted from 9 dental CT volumes provided by Pirkanmaa Hospital
District (Tampere, Finland), and 31 MR volumes of the head. The
surfaces were rigidly aligned according to [4], and their average was
taken to create a model surface Ω with 7407 nodes.

The axial centerline γ of Ω was estimated by projecting its nodes
to the xy plane and fitting a parabola to the point set corresponding
to the dental region. The bite plate pellets were manually located
from a CT volume of a dry mandible attached to a bite plate, and
then rigidly added to the model. The surface Ω was divided in 3 sec-
tions: inferior lateral (ΩA), inferior medial (ΩB), and superior (ΩC )
as shown in Fig. 3. In the reconstructions the mandible generally ex-
hibited the best contrast in ΩA and the worst in ΩC . This was taken
into account in computing the energy measure and in choosing the
region of interest in the affine transformations.

2.4. Estimating the region of valid reconstruction

One of the main difficulties related to the segmentation of limited-
angle reconstructions is that only a fraction of the volumetric data
is valid, i.e., correctly describes the geometry of the object. Ar-
eas, where the reconstruction fails, are not suitable for model-based
segmentation. If these are not excluded, nonexisting features in the
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Fig. 3. The mandible model Ω (7407 nodes) and the marker pellets
as seen from front and back. The mandibular centerline γ and the di-
vision into three sections ΩA (inferior lateral), ΩB (inferior medial),
and ΩC (superior) are illustrated.

ΩΓ Γ

Fig. 4. An example of cropping the model: the mandible surface
is cut perpendicular to Γ at its end points. The resulting surface
segment ΩΓ is rendered in dark gray.

reconstruction may direct the model to a false result. As shown by
Quinto [5], only edges, which are tangential to some line of pro-
jection, can be reliably reconstructed from limited-angle projection
data. Based on this, we use the tangential directions of the mandi-
ble centerline γ to estimate, which part ΩΓ ⊂ Ω of the mandible
has been adequately reconstructed in the volume and is suitable for
segmentation.

Because the initial position of the model relative to the projec-
tion directions may be inaccurate, we apply the cropping process de-
scribed below only after a few iterations of affine alignment. The ini-
tial estimate of the successfully reconstructed region is based on the
mandibular section (right / left, incisor / premolar / molar) and prior
knowledge, and denoted ΩΓ,0.

After the first iterations of affine alignment, we determine the
centerline segment Γ, whose tangential directions fall within the
AOV spanned by the projections. Then we extract ΩΓ ⊂ Ω as the
model segment, which remains between the two planes intersecting
Γ perpendicularly at its endpoints. This is illustrated in Fig. 4. The
final region of interest (ROI) is then defined Ω̃ = ΩΓ,0 ∩ ΩΓ, i.e., at
most the estimated valid region ΩΓ is matched to the reconstruction.

2.5. Pre-processing of the reconstructions

Due to low contrast and artifacts present in LAT reconstructions, the
volumes are pre-processed prior to the segmentation. The goal of
pre-processing is to enhance the contrast of the mandible outline and
to decrease the intensity of the artifacts.
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yz

(a) (b)

Fig. 5. The effect of pre-processing: (a) is a coronal cross section
from a molar LAT reconstruction and (b) the same image after pro-
cessing.

Volumes consist of clearly separable brighter and darker regions.
The area of interest is located in the brighter region with some arti-
facts, while the darker region contains only artifacts. We divide the
volume into bright and dark regions by using watershed segmenta-
tion. The dynamic range of the volume is expanded with parameters
determined from the histogram of the bright region. Intensity values
between 1–99.9% of the histogram mass are expanded to the full dy-
namic range of the volume. This weakens the artifacts in the darker
region while increasing the contrast of the brighter region.

Finally, we process the brighter region locally. Local processing
is used because the mandible edge has a locally higher intensity than
the artifacts, but not necessarily globally due to the intensity varia-
tion in the volume. The brighter region is processed in 32×32×32
voxel blocks. The dynamic range of each block is expanded by mov-
ing the black point to zero. An example of the processing result is
presented in Fig. 5.

2.6. Energy measure

To describe how well a region of interest Ω̃ ⊂ Ω matches the man-
dible’s outline in the volume V , we use a slightly modified version
of the energy measure we proposed in [6], namely

Edata(Ω̃) =
1

μ(Ω̃)

Z
Ω̃

V (r) n(r) ·∇V (r) dΩ

≈ 1

2Nh

NX
i=1

V (xi)
ˆ
V (xi + hni) − V (xi − hni)

˜
, (1)

where V (xi) is the gray scale value and ni is the outward unit sur-
face normal vector of Ω at xi = [xi yi zi], N is the number of nodes
in Ω̃ and μ stands for area. We compute the mean difference value
using h = 1, . . . , 4 for robustness.

The measure (1) is minimized, when Ω̃ surrounds a bright area,
which corresponds to the general appearance of the mandible in an
x-ray image. The section ΩC is an exception, as teeth may appear
brighter than the mandible (e.g., in case P4 of Fig. 6) and therefore
in Ω̃ ∩ ΩC the absolute value of the normal derivative is multiplied
by −1.

In a global affine transformation Etotal = Edata. To constrain
the elastic transformations as proposed in [7, 8], an internal energy
measure of the form

Emodel(Ω̃) =
1

N

NX
i=1

w1ni · ni,0 + w2 ‖ri − ri,0‖2 (2)

was used to compute Etotal = Edata + Emodel. In (2) ni,0 is the refer-
ence direction of the surface normal and ri,0 the reference location
of the ith node and w1 ≤ 0, w2 ≥ 0 are suitable weights.

2.7. Model initialization and affine alignment

The five landmark pellets are used to initially register the model to
the volume. The 2-D locations of the pellets are detected from the
projections with a template matching method, and these are solved
for the 3-D coordinates in the reconstruction. The mandible model
is then initialized to the reconstruction by using the rigid transfor-
mation [4] between the pellet locations.

The degrees of freedom (DOFs) of a 3-D affine transformation
are translation t = [tx ty tz], rotation r = [rx ry rz], scaling—
either isotropic sxyz or anisotropic s = [sx sy sz]—and shear σ =
[σxy σxz σyz]. The model is first deformed using different combi-
nations of these DOFs and different ROIs for computing the energy
measure (1). Presented as tuples (DOFs, ROI), the stages of the affine
transformation are ({t, r}, ΩΓ,0 ∩ ΩA), ({t , r, sxyz}, ΩΓ,0), and
({t, r, s, σ}, ΩΓ,0 ∩ ΩΓ). Each stage is repeated until the energy
value changes less than 1% in one iteration.

For example in molar cases the search spaces of the DOFs are
Δt = ±[20 30 10] mm, Δr = ±[15 15 35]◦, 0.75 ≤ s ≤ 1.33,
and Δσ = ±[0.5 0.5 0.5]. The coordinates refer to the reconstruc-
tions as illustrated in Fig. 5. The final values of the nodal normal
directions and locations are taken as the references ni,0, ri,0 for
computing Emodel in the subsequent elastic transformations.

2.8. Elastic alignment

After the affine transformations, the mandibular surface is deformed
elastically. First, 2×2×2 and 3×3×3 FFD grids and trilinear inter-
polation are used to deform Ω̃ = ΩΓ,0 ∩ ΩΓ. The search spaces for
the FFD control points are 33% of the grid’s respective dimensions.
Then, Ω̃ is deformed locally by moving its nodes in the direction of
the surface normals and distributing the displacements to the rest of
nodes in Ω in a smooth Gaussian manner, similarly to the method
presented in [8]. The displacements are computed according to

dk = exp

„
−‖rj − rk‖2

2σ2

«
d nj , (3)

where rj ∈ Ω̃ is the location of the displaced node, nj its outward
unit surface normal, d its displacement, rk ∈ Ω is an arbitrary node
location, and dk its displacement. Values 4.5 mm and 3.5 mm are
used for σ, and 33% of the nodes in Ω̃ are uniformly sampled for
optimization in both cases. The search spaces for the normal dis-
placement are equal to the parameter σ.

3. RESULTS

The segmentation process was performed on 13 reconstructions. On
a 2.4 GHz Pentium 4 workstation with 1 GB of memory, the seg-
mentation of one reconstruction took approximately 3–10 minutes,
of which 75% was due to the local Gaussian deformation. The re-
sults were evaluated by calculating the average shortest Euclidean
distance of Ω̃ to the manually extracted mandible surface, which was
ensured to exceed the coverage of Ω̃.



Table 1. Mean values and standard deviations of the segmentation
error (in mm) at different stages. Cases D1–D9 refer to volumes
acquired from a dry mandible and P1–P4 to volumes acquired from
patients. The first letter of the abbreviated mandible section stands
for right / left and the second for incisor / premolar / molar.

Case Sect. AOV Affine FFD Gaussian
mean ± SD mean ± SD mean ± SD

D1 LI 41.4◦ 0.39±0.65 0.26±0.48 0.17±0.36
D2 RP 42.7◦ 0.44±0.72 0.22±0.45 0.26±0.55
D3 RM 42.4◦ 0.37±0.63 0.26±0.53 0.14±0.39
D4 LM 50.4◦ 0.91±1.01 0.61±0.89 0.48±0.68
D5 LI 49.9◦ 0.42±0.69 0.25±0.55 0.21±0.52
D6 LP 49.7◦ 0.67±1.02 0.46±0.79 0.23±0.51
D7 LM 50.4◦ 1.01±1.28 0.55±0.84 0.56±1.06
D8 RM 50.9◦ 0.59±1.05 0.55±0.96 0.44±0.91
D9 RP 50.3◦ 0.20±0.51 0.29±0.67 0.21±0.55

mean 0.55±0.84 0.38±0.68 0.30±0.61

P1 LM 39.2◦ 0.52±0.70 0.25±0.48 0.16±0.37
P2 RM 38.4◦ 1.03±1.42 0.88±1.29 0.71±1.20
P3 LM 38.1◦ 0.68±0.93 0.61±0.92 0.35±0.73
P4 RP 42.9◦ 0.43±0.77 0.33±0.67 0.29±0.58

mean 0.66±0.95 0.52±0.84 0.38±0.72

mean total 0.59±0.87 0.42±0.73 0.32±0.65

The segmentation errors are presented in Table 1 and six exam-
ples of the initial and converged mandible outlines are presented in
Fig. 6.

4. DISCUSSION AND CONCLUSIONS

As can be seen from the results, the segmentation error generally de-
creases with each stage. The final error ranges from 0.14–0.56 mm
for the dry mandibles and 0.16–0.71 mm for the patients. The mean
value is 0.32 mm, i.e., less than 1.5 voxels. The result with dry
mandibles is slightly better than with patients, but the difference can
be attributed to case P2 (see Fig. 6), which exhibits poor contrast
even after pre-processing. The processing improved the reconstruc-
tions and enabled a better segmentation result. In some cases it was
in fact necessary for the model to converge to the correct location.

The initial rigid registration using the landmark pellets served
its purpose well in the sense that in each case the model converged
to a visually plausible result starting from the initialization. How-
ever, the pellets were added to the mandible model based on a single
CT reconstruction, and the variability of the bite plate location in a
patient’s mouth was not studied.

Our approach for estimating the region of interest proved to give
reasonable results as the final ROI Ω̃ generally converged to the area,
which appeared correctly reconstructed. It provided an automatic
way of cropping the mandible model for extracting a small region of
a local reconstruction, and enabled optimizing the transformations
based on anatomically valid intensity information.

The segmentation results were good, but on the other hand the
parameters and search spaces were chosen by trial and error, so that
the segmentation succeeded in each case. However, these parameters

D4 D5 D9

P1 P2 P4

Fig. 6. Examples of the segmentation results overlaid on cross sec-
tions from the pre-processed reconstructions. The titles correspond
to the cases in Table 1. The initial mandibular outline correspond-
ing to the marker pellet locations is overlaid in light gray and the
converged result in white.

were the same for each case. As more data becomes available, the
segmentation method can be more thoroughly evaluated.
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RESEARCH ARTICLE

Segmentation of facial bone surfaces by patch growing from cone
beam CT volumes

1Kari Antila, 2Mikko Lilja and 3Martti Kalke

1VTT Technical Research Centre of Finland, Espoo, Finland; 2Department of Biomedical Engineering and Computational Science,
School of Science, Aalto University, Espoo, Finland; 3KaVo Kerr Group, Tuusula, Finland

Objectives: The motivation behind this work was to design an automatic algorithm capable
of segmenting the exterior of the dental and facial bones including the mandible, teeth,
maxilla and zygomatic bone with an open surface (a surface with a boundary) from CBCT
images for the anatomy-based reconstruction of radiographs. Such an algorithm would
provide speed, consistency and improved image quality for clinical workflows, for example, in
planning of implants.
Methods: We used CBCT images from two studies: first to develop (n5 19) and then to test
(n5 30) a segmentation pipeline. The pipeline operates by parameterizing the topology and
shape of the target, searching for potential points on the facial bone–soft tissue edge,
reconstructing a triangular mesh by growing patches on from the edge points with good
contrast and regularizing the result with a surface polynomial. This process is repeated for
convergence.
Results: The output of the algorithm was benchmarked against a hand-drawn reference and
reached a 0.50 ± 1.0-mm average and 1.1-mm root mean squares error in Euclidean distance
from the reference to our automatically segmented surface. These results were achieved with
images affected by inhomogeneity, noise and metal artefacts that are typical for dental CBCT.
Conclusions: Previously, this level of accuracy and precision in dental CBCT has been
reported in segmenting only the mandible, a much easier target. The segmentation results
were consistent throughout the data set and the pipeline was found fast enough (,1-min
average computation time) to be considered for clinical use.
Dentomaxillofacial Radiology (2016) 45, 20150435. doi: 10.1259/dmfr.20150435
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Introduction

Precise planning of dental implants and dental and
maxillofacial surgeries require volumetric (three-
dimensional) images from the area to be operated.
CBCT has been developed as a relatively low-cost and
low-dose alternative to conventional CT to meet these
needs.1 During the past decade, CBCT has become an
established radiologic technique in dental imaging.
The full advantage of volumetric images will be

obtained by visualizations of the target and the neigh-
bouring structures, such as a tooth to be replaced with

an implant and the inferior mandible canal. These in-
clude (two-dimensional) cross-sectional slices of the
dental arch, panoramic radiographs of chosen geometry
and depth and volumetric renderings.2 When these two-
dimensional images or views are reconstructed from
volumetric images, their correspondence to anatomical
ground truth can be retained and the reconstructed image
orientation, location and geometry fitted to individual
anatomy when needed. Creating these views typically
require segmentation of the anatomic structures from the
volumetric images. Image segmentation is a very useful
and important tool in other purposes also, such as in the
evaluation of tumorous bone infiltration, intrabony
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pathologies, fracture diagnostics and orthognathic mon-
omaxillary and bimaxillary surgery planning.3–5

When image segmentation is performed manually,
the results are hard to reproduce. Manual drawing on
potentially hundreds of slices of high-resolution image
volumes takes considerable amount of time. Assuming
that manual drawing of the facial contour takes 10 s per
slice, drawing every slice of a single image consisting of
300 slices would take 25 min. Thus, automatic seg-
mentation methods would be much preferred. Un-
fortunately, CBCT or CT volumes often present strong
metal and other artefacts.6 The lower dose of CBCT
yields a lower signal-to-noise ratio, worse contrast and
higher intensity inhomogeneity than conventional CT.
The highly varying anatomy of the mandible and
maxilla, especially around the teeth, poses another
major challenge.
Lamecker et al7 were one of the first to report results

on segmenting the mandible from CBCT volume. Their
strategy was to use a statistical shape model, which was
deformed around the mandible.8 Rueda et al9 developed
a method for segmenting the cortical bone and other
targets from the cross-sectional slices of the mandible.
They exploited both the shape and texture of the hand-
segmented structures to train an active appearance
model of the structures of interest.10 Kainmueller et al11

extended the work by Lamecker et al7 by improving the
segmentation method and extending the application to
tracking the mandibular canal. Recently, Wang et al12

have presented a volumetric segmentation method for
both the mandible and maxilla. Their method registers
a number of prior models (atlases) to the target and
generates patient-specific prior model constructed of
patches that are selected from the registered images.
Past works on segmenting dental CBCT volumes

concentrate mostly on segmenting the mandible and its
internal structures. Shape and appearance models used
by published algorithms do not include the maxilla or
teeth, which are the structures most prone to exhibiting
metal artefacts, and usually also have the highest vari-
ation of shape and consequently represent areas where
segmentation algorithms are most likely to fail. In order
to develop an algorithm capable of segmenting the ex-
terior of these structures, several established segmenta-
tion paradigms were considered. Registering the volume
according to a mean intensity model was deemed un-
successful owing to the high variation in anatomy and
variation in pose and the varying state of the mandible
(mouth) being closed or open to some extent.13 Atlas-
based methods have been applied successfully in various
applications such as brain image analysis and now also
dental CBCT.12,14,15 However, generation of the shape
and intensity models as required by atlases would have
been challenging owing to the highly varying anatomy,
pose and scanned area of our population. The usually
very high computational cost and long execution times
associated with atlas-based segmentation tools were
unacceptable for our clinical tool. Active appearance
models, statistical shape models or other deformable

models have been found to be successful in segmenting
the mandible.2,7,11 However, these models require
a rather accurate initialization. In the typical case where
the exact location, orientation or delineation of the
target relative to the volume is not precisely known, the
initialization of these models would sometimes require
laborious manual interaction.
The aim of our study was to develop an automatic and

data-driven segmentation algorithm that requires only
very general and non-specific knowledge of the target.
The algorithm was specified to segment the exterior of all
visible bones in a CBCT volume with a single open
surface in three dimensions. The algorithm was required
to be accurate, precise and fast enough for clinical use
and to tolerate the challenging characteristics of dental
CBCT and possible gaps and holes around the facial
skeleton. The intended use for the algorithm was to aid in
creating visualizations and thus, good, consistent and
continuous overall fit to the target was preferred over
highly detailed result over small and local shapes.

Methods and materials

Data
The data set consisted of 49 isotropic CBCT volumes
collected by scanning human subjects during two sep-
arate studies S1 (n5 19) and S2 (n5 30) on separate
occasions. The subjects were scanned using manufac-
turer Soredex Scanora model (KaVo Kerr Group,
Tuusula, Finland) prototypes during their development.
S1 was scanned using an early version of the system and
prior to S2, the system was upgraded. The volumes were
reconstructed in cylinder-shaped fields of view (FOVs)
in three different sizes (diameter3 height: 603 60, 100
3 75 and 1453 75 mm). The 1453 75-mm FOVs were
available only in S2, after the upgrade. The volumes
were isotropic sized from 3003 3003 300 to 5803 580
3 300 voxels and from 0.13 to 0.35 mm per voxel. All
subjects were patients scanned by an authorized
healthcare provider according to rules of ethics. No
normal controls were included because of the use of
ionizing X-rays in CBCT. Subject diagnoses or any
other personal information was not disclosed with the
images. Most volumes had at least one of the following
types of artefacts: metal, movement, inhomogeneity or
noise, some severe (Figure 1). Roughly, 36.7% of sub-
jects had their mouth open to some extent during
scanning (Table 1). Most of the subjects were pre-
sumably candidates for implant surgery and thus were
missing some, even most, of the teeth. Positioning in-
formation, such as the anatomic region of interest
(mandible, maxilla or sinuses) or the placement of the
FOV (left, centre or right), was not included with
the images.

Overview of the segmentation algorithm
The basic principles of the developed segmentation algo-
rithm are rather straightforward: finding a sufficiently
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large number of points with good coverage on the exterior
bone–soft tissue edge of the facial skeleton and recon-
structing a surface mesh on them. The algorithm was
implemented in a pipeline of sequentially performed
steps (Figure 2).
The pipeline begins with filtering to suppress noise

and to estimate a number of parameters to be used later
in the pipeline. The main novelty and the key elements
of the algorithm are in four steps following filtering.
First, the coarse shape and location of the target is
parameterized. This parameterization also defines a to-
pology according to which a set of equally spaced line
profile segments presumably intersecting the target edge
is aligned. Second, potential edge points are searched
along these segments and the best candidates are se-
lected. Third, a mesh of triangles connecting the
neighbouring edge point candidates on the segments is
reconstructed and the best triangles are selected for the
final mesh configuration. Fourth, a surface polynomial
is fitted to the mesh to fill holes and gaps and to regu-
larize and smooth the result to a chosen degree. These
four steps are iterated and once a good fit to the target is
reached, the iteration loop is terminated and the
resulting surface mesh is the output. The following
sections discuss these steps in detail.

Filtering
The input volume is first filtered with a three-
dimensional, s5 1.5-mm Gaussian kernel. A kernel of

this size is large enough to smooth the noise typical of
our data set but not small enough to blur the target edge
too much or lose other relevant detail. Kernel size may
have to be determined for different modalities, image
resolutions, quality and targets. The volume is filtered
again with a two-dimensional Sobel-type kernel to es-
timate the magnitude and orientation of the edge gra-
dient for every voxel in the volume. The kernel is
applied to all slices of the image volume in axial
orientation.
The approximate intensity ranges of the bone and the

surrounding soft tissues need to be estimated for later
use in the segmentation pipeline. In CT, a natural way
of achieving this would be to use known ranges for these
tissues in Hounsfield units. Unfortunately, owing to
different volume reconstruction techniques used in
CBCT, this is not necessarily possible and mapping the
CBCT intensities to the Hounsfield units scale may not
be straightforward. For these reasons, we estimate the
ranges with a direct clustering-based classifier (Figure 3).16

Four predefined classes were set to approximate (1) the
background, (2) soft tissue, (3) bone and (4) hard objects
such as the tooth enamel and metal. The means and
standard deviations of the intensities of the voxels labelled
in the soft tissue and bone are retained.

Parameterization
The coarse shape, location and orientation of the target
are captured by an arc length-type parameterization.

Figure 1 Artefacts typical for dental CBCT: CBCT volumes are acquired with a smaller X-ray exposure and thus have a worse signal-to-noise
ratio when compared with conventional CT. The algorithm was designed to segment volumes with inhomogeneity (a), metal artefacts (b),
movement and noise (c) typical for dental CBCT.

Table 1 General characteristics of the data set

Set Mouth open Maxilla visible FOV centre FOV left FOV right Noise Metal
S1 15.8% 89.5% 89.5% 0.0% 10.5% 42.1% 63.2%
S2 50.0% 76.7% 76.7% 20.0% 3.3% 0.0% 70.0%
All 36.7% 81.6% 81.6% 12.24% 16.3% 16.3% 67.4%

FOV, field of view; S1, Study 1; S2, Study 2.
The table summarizes the relative number of images in S1, S2 and all where the subjects had the mouth open, the maxilla was at least partly visible,
how the FOV was placed (centre, left or right) and whether the image exhibited metal or noise-type artefacts. This information was compiled by
inspecting the data set visually.
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Arc length parameterization works well on the charac-
teristic shape of the dental arch, although other
approaches such as spherical parameterization could be
used.17 The parameterization is obtained by mapping
the points x5 {i,j,k} of the isotropic Cartesian index
coordinate system of the image voxel grid to a parame-
terized system x95 {i9,j9,k9}, where the coordinates are
the signed distance from the arc i9 from the apex and the
signed distance j9 from the nearest point on the arc.
Coordinate k is the axial slice index and remains un-
changed by the mapping, i.e. k95 k. Only one arc is
defined for the whole image volume. This mapping is
illustrated in Figure 4.
The arc is defined by a third-degree polynomial. Its

coefficients are solved by fitting the polynomial to edge
points of the whole surface projected on the {i,j} (axial)
plane. At the start when no edge points exist yet, the

polynomial is simply a horizontal line from left to right,
cutting the {i,j} plane in half. As the pipeline runs fur-
ther, the arc converges towards the dental arc and facial
bones. This parameterization defines a plane according
to which property segmentation surface will be defined.
The parameterization plane defined by the arc will

not have enough degrees of freedom to fit to the target
exactly and it is not supposed to do so. The parame-
terization is meant to only capture the global curvature
of the target and to define a rough topology and space
where potential target edge points are searched.
The edge points are searched on a set of line profiles

along orientation j9 in the parameterized space. A
number of line profiles are placed on a grid in the {i9,j9}
plane on a defined spacing. Uniform spacing of
1.25 mm was used for the best combination between accu-
racy and computation time. The grid also defines

Figure 2 Overview of the automatic segmentation CBCT pipeline: the input volume is read and filtered to suppress noise, extract image gradients
and estimate parameters of the volume content. The four steps: parameterizing the surface topology, searching for potential target edge points,
reconstructing surface edge points and fitting a surface polynomial to the reconstructed mesh are iterated for best results. Once converged, the
resulting triangular surface mesh is provided as output.

Figure 3 A CBCT image is filtered and the image voxels clustered according to thresholds defined by a direct-clustering method to approximate
intensity ranges of the tissue classes before segmentation. Noise and small artefacts are smoothed with Gaussian filtering (a). The filtered images
are clustered into classes of (1) background (dark grey areas), (2) soft tissue (grey areas), (3) bone (light grey areas) and (4) hard objects such as
enamel and metal (white areas) (b). A small portion of the outside rim of the field of view (FOV) is removed from the parameter estimation owing
to regular inhomogeneity in the area (b). The error in classification due to inhomogeneity shown in (b) as if the bone would spread along the
borders of the FOV at 4 and 8 o’clock orientations.
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a topology in which the actual surface is reconstructed
during the later stages of the pipeline. Use of line profiles
has the benefit of limiting the space and the number of
voxels for the search to achieve faster computation.

Edge point search
Potential edge points are searched by estimating an
energy as follows:
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for every voxel x9 crossing a line segment at n5 {i9,k9},
where g(x9), v(x9) and o(x9) are the gradient magnitude,
image intensity and gradient orientation, respectively.
E(x9) has similarities to energy functions used in other
segmentation methods but was defined specifically for
this problem.2,7,9,11 g(x9), v(x9) and o(x9) are estimated

at the filtering step of the pipeline and remain constant.
vdiff is the difference between the average intensities of
voxels labelled to the soft tissue and bone and r is the
radius of the Sobel kernel used in estimating edge gra-
dients. vn and on are the estimated intensity and target
orientation of the line profile segment at n. vn and on are
updated at every iteration based on the intensities and
orientations of the edge point at n.

a, b and c are weighing constants determined with
machine learning or, in this work case, determined simply
by exhaustive search by using the training set. E(x9) was
designed as a minimum energy function with the three
components normalized to the scale of [0,1] with the
value of 0 indicating the best possible properties.
Once the energy values have been computed for every

voxel crossing a line profile, a number of q voxels at
local minima per every profile are selected. In this study,
we used q5 3, as in the vast majority of the cases, the
correct edge was found among the three best candidates.
The search of local minima along the line segments is
illustrated in Figures 5 and 6.

Surface mesh reconstruction by patch growing
Besides the actual segmentation, the aim of recon-
structing the target surface is to determine which of the
edge point candidates lay on the same edge and thus are
part of the same structure or object and further which
surface represents the desired facial bone–soft tissue
edge. The surface is constructed as a triangular mesh
whose topology, i.e. the node to vertex configuration, is
fixed at the parameterization step and remains constant.
The goodness of fit of the mesh to the edge will be
estimated locally by computing energies for the edge
point candidate–triangle combinations using Function
(1). The energies are estimated for every image voxel
crossing the triangle and the median is taken by giving

Figure 4 Image grid coordinate system and the parameterized
system: the image coordinate system {i,j,k} is an isotropic, Cartesian
grid where coordinates {i,j} lie on the axial plane. Parameterization
bends the original coordinate system (grey areas) along a polynomial
(white areas) fitted on the outer surface of the dental arc. The resulting
coordinates of the parameterized space are signed arc length from the
apex i9 and signed distance to the nearest point on the arch j9. The
mapping is two dimensional and thus k95 k.

Figure 5 Edge point search along the line profiles: potential edge points are searched along the line profiles and a number of q (here, q5 3) best
candidates are selected for further consideration. The best candidates are shown in red, second best in green and third best in blue. Image (a) shows
the line profiles and point candidates after the first iteration when the parameterization and thus the last component of the energy Function (1) is
not yet used. Image (b) shows a slice with line profile configuration bent along the parameterization during later iterations where segment lengths
are trimmed for shorter energy profiles and thus less voxels for evaluation. For colour image see online.
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one energy value per triangle. The triangles with the
lowest energy will be selected for the mesh if a maxi-
mum energy threshold of 0.9 is met. In case of exceeding
the energy threshold, the triangle is discarded, leaving
a hole in the mesh.
To find a global minimum, all triangle combinations

by neighbouring point candidates should be tested.
This, however, would lead to an unnecessarily high
computational cost, since the energy values for triangles
of q3 edge points would need to be estimated for every
triplet of line segments. Instead of going through all
combinations, a number of seed points are selected and
fixed. All (q23 4) triangle combinations around the
seed and the adjacent edge point candidates are evalu-
ated and the minimum energy triangle is taken. This
single triangle acts as the start of a surface patch

(Figure 7) that is further grown by fitting the triangles
on the patch boundary to the edge point candidates on
the neighbouring line segment and adding the minimum
energy triangle to the patch if it falls below the maxi-
mum energy threshold. Since all but the single tested
edge point candidate (node) is fixed to the patch al-
ready, only the maximum of q combinations per tri-
angle need to be tested. Growing patches in this manner
does not guarantee a global minimum for the whole
mesh but gives a very good chance of finding the local,
consistent edges and requires only linear time to
compute.
The criteria for the selection of seed points are critical

for providing an accurate starting point for the patch-
growing phase and thus successful surface mesh re-
construction. We chose to select the points that have the

Figure 6 Energy and intensity: corresponding energy (grey line) profiles as computed with Equation (1), with the corresponding intensity (black
line) (a). The profiles show that the energy minima correspond to the highest gradients in the intensity that match the edges of the outer and inner
surfaces of the mandibular bone. The location and orientation of the intensity profile in (a) is shown on an axial image slice in (b).
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lowest energy and lie foremost on their segments. These
are most likely correct for segmenting the outer surface
of the facial skeleton, since the only edges in dental
CBCT outside the skeleton are the soft tissue–air
boundary or artefacts. In another application, some
other criteria could be used or the operator could be
asked to select a number of points depending on the size
and contrast of the target to act as seeds.
The patch growing will be run for every surface patch

independently. This will result in a number of patches,
some of which might overlap. In other words, two edge
point candidates from the line segment may belong to
different surfaces. This will lead to a problem where the
right patches to represent the target surface need to be
selected. In this application, the two largest non-
overlapping patches were taken. It was simply pre-
sumed that the two largest patches represent the maxilla
and mandible. Also, additional rules such as the mini-
mum patch size and maximum average triangle energy
threshold were used to discard patch edges likely other
than facial bones (sinus cavities etc.) from
consideration.

Fitting of surface polynomial
The surface reconstruction will result in a mesh with
holes and disjoint patches. To bridge these holes and
gaps and to obtain smooth and consistent surfaces, the
mesh needs to be interpolated. This is performed by
fitting a thin plate smoothing spline polynomial f(n) to
the edge point candidates that remain on the mesh
patches after the growing phase.18 The smoothing is
performed in the parameterized space. The coefficients
of f are estimated by minimizing the sum as follows:
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is the error measure between the mesh node coordinate j9
and the value of the function f at coordinate n5 {i9,k9}
and R(f) is a roughness measure penalizing the bending
of the surface too sharply. A smoothing parameter p2
[0,1] acts as the weighing term between the two compo-
nents. R(f) can be chosen according to the application.
We used the integral of the second derivatives of the node
coordinates as implemented in MATLAB curve fitting
toolbox function tpaps (MathWorks, Natick, MA).
The polynomial is fitted to the edge points in the

parameterized space, since this removes the global
curvature of the target and thus enables an effective
representation of the surface. Figure 8 shows a typical
result of a surface fitting to a mesh just after
reconstruction.

Convergence
Once the surface polynomial has been fitted, its prop-
erties will be evaluated. First, it needs to be determined
whether to continue or terminate the iteration loop
(Figure 2). During the early development of the algo-
rithm, the decision was based on the estimation of the
movement of the surface mesh node coordinate j9 from
the current and previous iterations. If 95% of the nodes
deviated less than a chosen threshold from the previous
iteration, the loop was terminated. Since most of the
progress is typically gained during the early iterations,

Figure 7 Growing surface patches to a mesh: a number of seed points potentially on the bone–soft tissue edge are selected and a number of
patches (separate patches in different shades of grey) are formed by joining neighbouring seed points by triangles (a). The patches shown are grown
by adding potential edge points on the analyzed line segment (b). Image (c) shows the resulting surface mesh of the patch-growing phase.
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we decided to run a fixed number of three iterations
instead. Iterations beyond that gave very little im-
provement for the cost of the extra computation time
used. If the loop is continued, the parameterization
polynomial will be refitted to the current edge point
coordinates and the terms vn and on in Equation (1) are
re-estimated.

Assessment
The results were validated against a reference surface
drawn manually by an expert (a medical physicist with
10 years’ experience). The facial bones were drawn by
placing markers on the axial slices of 2-mm spacing,
covering all bone–soft tissue contours visible to the eye.
The segmentation error was computed as the closest
distance from the markers to the segmented surface.
The distance was measured from a marker to the plane
spanned by a mesh triangle along the normal direction
of the plane. All marker–mesh triangle combinations
were tested and the shortest distance was taken for every
marker. In addition, the marker–triangle correspon-
dence was tested by scaling the mesh (inflation or de-
flation around the centre of the mesh) so that it would
cross the tested marker. Only those marker-to-surface
measurements where the marker crosses a triangle of the
scaled mesh were taken into account. This procedure
also gives an estimate of how much the automatically
segmented surface area covers the hand-drawn target.
The average distance, standard deviation and root mean
squares (RMS) of the marker–surface distances per
image were estimated.

Results

Accuracy
Visual examples of the best, average and worst perfor-
mance of the algorithm are shown in Figure 9.

Figure 10 shows the distributions of distances from
the hand-drawn markers to the segmented surface
per image.
The results per volume are shown in Tables 2–4.
The study S1 was used as a training set to find the

best values for the constants a, b and c in Function (1)
and S2 was used for validation. The values a5 0.48,
b5 0.26 and c5 0.26 for Function (1) were found to
give the best average accuracy. The largest weight in the
energy function was thus given to edge gradient mag-
nitude a. The relatively low values (,0.1) of p in
Function (2) gave the most consistent surfaces. Thus,
a rather large weight was given to the smoothing com-
ponent of Function (2), smoothing the sharp curvatures.
The average computing time using an iMac OS X 10.6

(Apple, Cupertino, CA) Intel i5 2.4-GHz (Intel, Santa
Clara, CA) workstation was just below a minute per
volume running a single thread. The segmentation al-
gorithm and the validation method were mostly imple-
mented in MATLAB 2011b with a few parts such as the
computation of line–voxel and triangle–voxel inter-
sections written in C. The single most computationally
intensive step was solving the thin plate surface poly-
nomial, which took roughly half of the computation
time. About one-third of the time was spent in filtering
the volumes and the rest mostly in parameterization,
energy computations and mesh reconstructions.

Application
The primary motivation behind developing the algorithm
was to generate anatomy-based radiographs with no or
very little user interaction. For example, in implant
planning, a typical problem is to determine the exact
location of the mandibular canal relative to the man-
dibular bone or the bottom of the sinus cavity relative to
the maxillary bone. Here, we present an example appli-
cation where a panoramic slice and a number of cross-
sectional views (Figure 11) were reconstructed based on
the segmentation of the facial bones on a presumed lo-
cation (right molar) of the implant.

Discussion

An algorithm capable of segmenting the exterior of the
facial bone surfaces including the mandible, teeth,
maxilla and zygomatic bones was developed and vali-
dated. The developed algorithm reached an accuracy of
0.5 mm (averaged over all images) from the segmented
surface to the manually drawn markers. The segmented
surfaces covered an average of 92% of the area (mark-
ers) of the reference surfaces. Extensive coverage is
a significant indicator of the performance of the algo-
rithm, since all facial bones in the images visible to the
human eye, including the most distorted and thus dif-
ficult to segment areas, were included in the reference.
The precision of the developed algorithm was evalu-

ated by computing the RMS distance between the seg-
mented surface and the manually drawn markers. The

Figure 8 Surface regularization with a thin plate polynomial: a thin
plate spline surface is fitted to the raw surface mesh (light grey) which
typically contains holes, sharp peaks etc. The spline surface (dark
grey) will fill the gaps and smooth the result to a chosen degree.
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algorithm reached an average RMS distance of 1.1 mm,
the worst image giving 2.9 mm. This indicates that none
of the surfaces segmented had major deviations from
the reference. These results are close to the most accu-
rate reported in dental CBCT segmentation by
Kainmueller et al.11 They achieved the average RMS
distance of 0.8 mm compared with our 1.1 mm in this
study. Kainmueller et al’s11 results were reported for the
mandible, whereas ours include the exterior of the
maxilla. Wang et al12 reported excellent dice ratios (0.91
for the mandible and 0.87 for the maxilla) and accuracy
(average surface distance) similar to our method (0.61
vs. 0.50 mm). The average surface distance of Wang
et al12’s method was reported for the mandible. The

computational cost of Wang et al12’s algorithm was
very high (5 h) that limits its clinical application.
The developed method was found to give consistent

results for the entire data set. The visual impression of
the algorithm robustness in noisy images and images
with weak edges was very good. The developed algo-
rithm, like almost any other segmentation method, is
still somewhat prone to false edges. In dental CBCT,
there may be several false edges with an intensity profile
and orientation similar to those of the correct edges
owing to inhomogeneity, metal, reconstruction errors or
other artefacts. The rather simple logic of our algorithm in
choosing the correct edges may get distracted in areas with
similar, competing edges. This is the cause for the largest

Figure 9 The best, average and worst segmentation results: slices (a) and (b) show the best result based on the shortest average distance from
a hand-drawn surface. The automatically detected edge points (black circles) and manually drawn markers (grey circles) are shown on axial image
slices. Slices (c) and (d) show a typical result. Some of the worst results occur when the algorithm gets attracted to false edges owing to bad contrast
(e) and metal artefacts (f) or when the amount of applied smoothing is excessive to capture the sharp topological features such as the maxilla just
below the zygomatic bone or a combination of these. The ruler overlay units are in centimetres.

Figure 10 Distributions of surface-to-hand-drawn marker distances (errors): the distances [in millimetres (mm)] between hand-drawn markers
and segmented surfaces are shown with box and whisker plots, where the midline in the box is the median, the box limits are 25 and 75% and the
whisker limits are 5 and 95%. The distributions are ordered from poorest to best (left to right) as measured in the width of the 5 and 95% limits.
The horizontal axis shows the image indices. Images that belong to the teaching set (Study 1) are marked with asterisks (*).
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deviations shown in Figure 10. It may not be simple to
overcome this by a fully automatic algorithm in dental or
other applications, but a feature where the operator
manually selects one or two correct surface patches from
a number of proposed ones in case of difficult images
could be trivially added to the current algorithm.
The parameters of our algorithm, the weights of

Equation (1), smoothing parameter in Equation (2) and
spacing of the parameterization grid, were set to reach the

minimum average distance from the reference. The best
combination of these was determined by an exhaustive
search over a large range using study S1. The selected
combination was independently tested with S2. The fact
that the algorithm performed better in S2 than in S1 is
explained by the improvement in the image quality owing
to equipment upgrades between S1 and S2. In fact, S1
represents early prototype data, which provided us the
opportunity to test our method in a much more chal-
lenging environment when compared with today’s
requirements for image quality. On the other hand, many
images in S2 had larger FOVs that also included the zy-
gomatic bones that are sharper in shape than those
present in the smaller FOVs of S1. Since the choice of the
roughness measure and value for the smoothing param-
eter in Function (2) was solely based on S1, we saw
somewhat poorer performance in some of the large FOVs
of S2. We would have likely achieved the best results by
estimating the parameters with a cross-validation scheme
that uses images from both studies, but since we had al-
ready used all images in S1 at the early design stages of
the algorithm, this was not possible.
The thin plate spline surface polynomial was chosen to

regularize and extend our segmentation surface over
areas that have holes or are severely affected by artefacts.
The use of the smoothing term with the spline results in
a trade-off between the average and RMS distances. In
general, using less smoothing gives a better accuracy but
worse precision. Aggressively smoothed results would be
beneficial for applications such as panoramic and cross-
sectional slice reconstruction, where sharp curves could
complicate the calculation of the orientations of the
cross-sections and the location of the sharp layer. On the
other hand, applications such as segmentation for vol-
ume rendering could benefit from a less smooth and thus
more detailed fit to the target.
The primary motivation of the work was to develop

a segmentation method to be used in the automatic re-
construction of cross-sectional and panoramic views of the
facial and dental bones. This article presents an example
where this is performed by using the segmentation of the
exterior of the dental and facial bone structures. However,
the inner structures of the mouth and sinuses are probably
of equal clinical importance. Although not presented in
this article, the algorithm was also tried on the interior
surfaces of the mouth. These tests suggest that by read-
justing the parameters, it is possible to segment the interior
with similar accuracy as we now report for the exterior.
Ideally, the pipeline should be configured to segment both
the inner and outer surfaces simultaneously, exploiting the
obvious similarities in shape, orientation and location of

Table 2 Individual segmentation results for the Study 1 data set

Index Mean (mm) Std (mm) RMS (mm) Coverage (%)
1 0.32 0.30 0.44 92
2 0.81 2.81 2.91 76
3 0.46 0.75 0.88 88
4 0.43 0.70 0.82 85
5 0.44 0.46 0.63 86
6 1.31 2.31 2.65 81
7 0.83 2.15 2.30 85
8 0.59 1.50 1.61 94
9 0.47 0.47 0.66 90
10 0.48 0.50 0.69 97
11 0.36 0.36 0.51 90
12 0.46 0.71 0.84 94
13 0.40 0.54 0.67 91
14 0.43 0.34 0.55 89
15 0.60 0.86 1.04 90
16 0.51 0.56 0.76 98
17 0.72 2.59 2.67 78
18 0.51 2.35 2.40 92
19 0.44 0.63 0.76 89

RMS, root mean squares; Std, standard deviation.

Table 4 Averaged segmentation result images in Study 1 (S1), Study
2 (S2) and both (all) combined

Set Mean (mm) Std (mm) RMS (mm) Coverage (%)
S1 0.52 1.14 1.26 89
S2 0.49 0.93 1.05 94
all 0.50 1.01 1.13 92

RMS, root mean squares; Std, standard deviation.

Table 3 Individual segmentation results for the Study 2 data set

Index Mean (mm) Std (mm) RMS (mm) Coverage (%)
20 0.43 0.61 0.74 96
21 0.51 0.87 1.01 94
22 0.45 0.48 0.66 100
23 0.87 2.29 2.44 95
24 0.46 0.63 0.78 95
25 0.56 0.93 1.08 97
26 0.49 0.80 0.94 98
27 0.62 1.13 1.29 93
28 0.31 0.28 0.41 97
29 0.56 1.69 1.78 97
30 0.46 0.54 0.71 97
31 0.34 0.29 0.45 94
32 0.49 0.67 0.83 96
33 0.42 0.57 0.71 90
34 0.34 0.26 0.43 96
35 0.25 0.26 0.36 95
36 0.36 0.39 0.53 90
37 0.77 1.22 1.44 80
38 0.62 1.10 1.26 87
39 0.33 0.43 0.55 91
40 0.47 0.58 0.75 96
41 0.35 0.55 0.65 94
42 0.41 0.52 0.66 96
43 0.40 0.36 0.54 97
44 0.36 0.35 0.50 95
45 0.53 1.44 1.53 98
46 0.48 0.38 0.61 97
47 1.11 1.89 2.19 98
48 0.39 0.51 0.64 98
49 0.33 0.40 0.52 96

RMS, root mean squares; Std, standard deviation.
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these structures. This is an obvious topic for further re-
search. Segmenting the maxillary sinuses is a rather dif-
ferent kind of challenge for which methods exist.19,20

Although not tested, we believe that our algorithm has
potential for segmenting the sinuses also.
A key feature of the algorithm is the use of parame-

terization to define the topology to define some proper-
ties of the surface to represent the target. The choice of
using a two-dimensional, third-degree polynomial fitted
to the facial skeleton was made for its resemblance to the
setting of traditional panoramic imaging. This also led to
the very intuitive relation between the parameterized and
real-world volume spaces and a very simple mathematic

description. In other applications (unknown pose, for
example), this would be a limitation since it results in
a poor ability to capture edges parallel to axial planes. In
our case, moving to full three-dimensional surface pa-
rameterization would have resulted in significant and
complicating changes with only potentially marginal
improvements to the segmentation accuracy. We have
tested the algorithm successfully in segmenting another
target scanned with another modality by using genus
0-type closed surface for parametrization. 2

A short execution time is a key property of any al-
gorithm intended for clinical use. We believe that an
algorithm with a runtime of 1 min, and less when

Figure 11 An example of using the segmentation result to reconstruct panoramic and cross-sectional slices: a line contour (grey line) to mark the
centre of a layer used in panoramic reconstruction is drawn on a slice of interest (a). The contour is computed by moving the segmentation contour
(black dotted line) inwards to a fixed distance, here 4 mm (a). Seven cross-sections (grey lines) are placed on the right molar (a). A scene including
the reconstruction of the panoramic and cross-sectional slices in (a) is rendered in three dimensions showing the curvature of the panoramic layer
(b). The panoramic reconstruction laid on a plane shows the molar roots and the mandibular canal (c). The cross-sectional slices marked on (a)
show the extent of the roots relative to the mandibular canal (d). This example was created using Image 26 in our data set. L, left; R, right.
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implemented efficiently on modern hardware, would
provide a dentist or oral surgeon enough time to ensure
a smooth workflow, for example, for inspecting the
processed images during a single patient visit. Although
only those algorithms that can be implemented effi-
ciently were chosen for our pipeline, the presented
implementation was intended to demonstrate only the
feasibility of our approach and was not optimized for
performance. The current main bottlenecks of the pipeline,
the thin plate spline computation and Gaussian1Sobel
filtering, could be significantly improved with paralle-
lization. The nature of those tasks readily permits this.
The same applies to the computation of the voxel en-
ergies. We believe that exploiting the power of modern
graphical processing unit computing would bring the
execution time to a fraction of the current version.

Conclusions

In conclusion, we developed an algorithm for seg-
menting the exterior of the facial skeleton from CBCT

images, yielding accuracy similar to that previously
reported for the mandible, a much easier target. We
achieved consistent results throughout the data set with
algorithms fast enough to be implemented for clini-
cal use.
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Purpose: Up to 25% of women suffer from uterine fibroids (UF) that cause infertility, pain, and
discomfort. MR-guided high intensity focused ultrasound (MR-HIFU) is an emerging technique for
noninvasive, computer-guided thermal ablation of UFs. The volume of induced necrosis is a predictor
of the success of the treatment. However, accurate volume assessment by hand can be time consum-
ing, and quick tools produce biased results. Therefore, fast and reliable tools are required in order to
estimate the technical treatment outcome during the therapy event so as to predict symptom relief.
Methods: A novel technique has been developed for the segmentation and volume assessment of the
treated region. Conventional algorithms typically require user interaction or a priori knowledge of the
target. The developed algorithm exploits the treatment plan, the coordinates of the intended ablation,
for fully automatic segmentation with no user input.
Results: A good similarity to an expert-segmented manual reference was achieved (Dice similarity
coefficient = 0.880 ± 0.074). The average automatic segmentation time was 1.6 ± 0.7 min per patient
against an order of tens of minutes when done manually.
Conclusions: The results suggest that the segmentation algorithm developed, requiring no user-
input, provides a feasible and practical approach for the automatic evaluation of the boundary
and volume of the HIFU-treated region. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4881319]

Key words: uterine fibroid, high-intensity focused ultrasound, image segmentation, treatment volume

Up to 25% of women suffer from uterine fibroids (UF), which
are benign muscle tumors.1 Magnetic resonance-guided high-
intensity focused ultrasound (MR-HIFU) has proved to be a
promising method for treating these tumors noninvasively.2

The ultimate benefit is that it requires no surgical incisions,
resulting in short recovery times and a patient-friendly safety
profile. The treatment typically leads to symptom improve-
ment, and is able reduce the size of the fibroid.

The volume of thermally (HIFU) ablated fibroid tissue pre-
dicts the success of alleviating the tumor-related symptoms.3

Determining the treated fibroid region with conventional mea-
surement tools, such as approximation with a manually drawn
ellipsoid, may be straightforward; however, the ablated tissue
as seen in the postoperative images may be very irregular or
complex in shape.4 Therefore, characterization of the treated
region, especially volume measurement, may be strongly lim-
ited and biased by conventional, oversimplifying approaches.
Precise manual delineation of the treated volume is subjec-
tive and too laborious and time-consuming to be performed

in a clinical setting. Therefore, segmentation methods, poten-
tially automated, would contribute towards a more precise,
more rapid, and less burdensome assessment of the treatment
outcome.

A wealth of segmentation methods has been developed for
detecting various targets in MR images; semiautomatic tech-
niques rely on user input,5 while others utilize statistical infor-
mation such as intensity, shape, size, and location of known
data.6, 7 Available processing time, required precision, and the
amount of pre-existing data affect what methods can be con-
sidered. Given that the treated region may have a complicated
and unpredictable shape, the classic statistical or model-based
segmentation methods utilizing prior data may not be feasi-
ble. A semiautomatic method of region growing has previ-
ously been applied to problem.8 In region growing, the opera-
tor identifies the target by placing a number of seed points that
are grown to larger regions by iteratively adding neighboring
voxels with similar properties to the region. Although region
growing-based techniques are able to label consistent areas
with similar properties, the results are generally highly depen-
dent on the seed selection and similarity parameter. There are



FIG. 1. A schematic presentation of the automatic segmentation pipeline. The pipeline took postoperative, contrast-enhanced MR slices of the fibroid in DICOM
and the treatment log containing sizes and orientations of the sonication cells (focal points) of HIFU thermal ablation as inputs. Images were preprocessed,
stacked and interpolated to 3D volumes, and a surface model for the fibroid was created based on the sonication cell data. The surface model was deformed
around the PV with an ASM (Active Shape Model)-type segmentation algorithm. The voxels inside the deformed surface were contained in a mask, inside
which the voxels in the PV (the untreated tissue) and the NPV (the treated tissue) were classified by an EM (Expectation Maximization) segmentation algorithm.
The surface model was refitted to the EM-segmented volume, and the NPV regions output in binary volume for quantification and as a surface mesh for visual
evaluation.

currently no techniques that would automatically, precisely,
and expediently segment the treated region from contrast-
enhanced MR images during or following a HIFU treatment.

The aim of this study was to develop and validate an al-
gorithm for automatic segmentation of treated regions in an
MR image stack taken immediately after treatment. Since
MR-HIFU is a computer-controlled technique in which the
HIFU-beam is focused on predefined locations called treat-
ment cells, the recorded coordinates of the cells could be ex-
ploited in the segmentation in order to ease or remove the
requirement for user input.9 We, therefore, utilized the size,
shape, location, and orientation of each treatment cell (i.e.,
the volume intended to be thermally ablated by HIFU) as
a priori information in the development of the algorithm.

Thirty-one subjects were scanned at four different clin-
ics (sites 1–4, n = 16, 2, 3, 10) after receiving HIFU treat-
ment (MR-HIFU for uterine fibroid therapy, Philips MR-
therapy, Vantaa, Finland) in a previous clinical trial.10 The
trial was authorized by local boards of ethics. T1-weighted
images (THRIVE, TFE3D with SPAIR and SENSE, TR/TE
6.6 ms/3.2 ms, FA 10◦, IR delay 90 ms, SENSE 1.5, Scan
time 4:40 min, pixel size 0.48 × 0.48 mm, 3 mm slice thick-
ness) were acquired after administration of 0.1 mmol per body
kg of Gadopentetate Dimeglumine. The contrast agent visu-
alized the nonperfused volume (NPV), i.e., fibroid tissue con-
sidered to have been ablated by HIFU in contrast to the per-
fused volume (PV), the fibroid tissue with remaining blood
circulation.

Treatment logs including the sizes, locations, orientations,
and completion of the HIFU sonication of each treatment cell
were obtained. Data from 2 out of 31 subjects were omitted
because of a failure to induce NPV due to technical or other
reasons. Preoperative MR-images were available from only
one clinic (site 1, n= 16) and were used to confirm the lack of
pre-existing necrosis. The lack of pre-existing necrosis was an
exclusion criterion for the trial, so for the rest of the subjects
it was assumed.

The segmentation algorithm was implemented as a
pipeline of several consecutive steps (Fig. 1). The pipeline
began by reading postoperative, contrast-enhanced MRI im-
age slices, and the treatment log file. The image slices were
filtered with a Gaussian kernel (σ = 0.5 mm) for suppressing
noise, and linearly interpolated to a three-dimensional volume
of 1 mm3 isotropic voxels. The sizes, locations, and orienta-
tions of the sonication cells in the image coordinates were
read from the treatment log; however, the cells whose soni-
cation was reported as incomplete by the HIFU system were
discarded. The surfaces of the cluster of cells were meshed
with triangles [Fig. 2(a)], and a convex hull was formed on
the mesh nodes of the cluster by three-dimensional Delaunay

FIG. 2. The ASM segmentation method required an initial surface model
having roughly the right size, shape and location for the target. The model
was formed by first meshing a number of ellipsoids representing the soni-
cation cells in the treatment log (a). Next, a convex hull was formed on the
nodes of the meshed cell surfaces (b). The hull mesh was enlarged towards the
presumed outer border of the PV so as to cover the approximate safety mar-
gins of the sonication plan, resampled for even triangulation and smoothed
for a more rounded appearance (c). PV is the round object at the center of
the image containing the more complex-shaped and darker object, NPV (d).
When overlaid on a contrast-enhanced MRI image, this initial PV surface
model (gray contour) and cell surfaces (black, round objects) should have
approximately covered the PV and NPV, respectively. NPV was segmented
with the EM algorithm (e). The segmented NPV regions were also output as
a surface mesh (f).



triangulation [Fig. 2(b)]. The outer surface of the hull was
remeshed for equally spaced triangles and enlarged by mov-
ing every mesh node to the direction of the out-pointing sur-
face normal by 10 mm [Fig. 2(c)]. The mesh was enlarged
since the treatment plan has a safety margin in order to pre-
vent damage to the surrounding tissues. Thus the treatment
cell cluster is always smaller than the fibroid. The enlarged
mesh was subsequently smoothed for a more rounded appear-
ance by moving the mesh vertices iteratively towards the aver-
age location of the neighboring vertices in ten fixed iterations.

The purpose of the mesh was approximately to contain
the fibroid tissue and the treated tissue. These are essentially
the PV and the NPV. These were segmented from the image
with an active-shape-model (ASM) type algorithm.11 The al-
gorithm worked in its classic form by moving the mesh nodes
along their normal vectors towards the maximum of image
edge gradients, and the goodness-of-fit to the surface was de-
termined as the sum gradients of voxels in current mesh node
locations according to the energy function

Et =
∑

i
ḡx ∗ n̄i

T , (1)

where t is iteration number at iteration, ḡx is the gradient vec-
tor at voxel coordinate x, and n̄i is the normal vector for mesh
node i. The strength of the gradients was normalized to a max-
imum of 1. As a slight modification to the classic ASM, the
gradients were multiplied with the corresponding mesh node
normal vectors n̄i [Eq. (1)]. This gives the strongest response
to edges having the same local orientation as the surface be-
ing deformed. The energy was computed on voxels x along
the normal vector within ±25 mm from the node i and moved
towards the maximum. No internal energy term regularizing
the shape of the PV surface was used. The fitting process was
run iteratively until 95% of the nodes had converged or a fixed
limit of 15 iterations was reached. Once converged, the sur-
face should have contained all of the NPV and the surround-
ing areas of the PV. The final result was not affected if a part
of the PV was left out as long as all of the NPV was included.

The ASM-segmented surface was used to form a mask
that separates the NPV and parts or all of the PV from
the rest of the image. The inside of the surface-masked re-
gion was corrected for inhomogeneity, which were often
present in scans with a large field-of-view (FOV), using the
N4ITK algorithm.12 The voxels inside the mask were seg-
mented to two tissue classes representing PV and NPV with
an expectation-maximization (EM) algorithm.13, 14 The EM
algorithm fitted a mixture of a predefined number of Gaus-
sian distributions on the intensity histogram of the voxels in-
side the mask. The version of the EM algorithm used also uti-
lized local information in the form of Markov Random Fields
(MRF).14, 15 MRF added a probability component that de-
pends on the classifications of neighboring voxels. This gave
a smoother and less noisy result when compared to solely
intensity-based EM-segmentation. The MRF model used in
this paper14 did not require any user-defined parameters to be
set. All voxels were labeled as PV or NPV; class PV was con-
sidered to be more probable in the brighter and NPV in the
darker side of the spectrum.

The EM-segmentation typically results in a label map on
which the PV-labeled region contains all NPV-labeled vox-
els. However, it is not uncommon for NVP-labeled regions
to penetrate the PV shell. This may happen, where the HIFU
beam was targeted close to border of the fibroid, where dark
local image artifacts were present, or where large blood ves-
sels penetrated the PV. This may result in leaks-–darker-than-
PV areas of other tissues surrounding the PV but still con-
tained by the ASM-segmented surface-–being misclassified
as NPV. To cap these leaks, the PV surface was refitted to the
PV/NPV class label image, as given by the EM-algorithm,
with the same ASM segmentation method as used in deform-
ing the original surface. This time, the surface was refitted
specifically to the binary object of voxels labeled as PV. As a
result, the surface was tightly deformed around the PV-labeled
object still containing the NPV.

The 6-connected regions of NPV-labeled voxels inside the
refitted mask were analyzed, and those isolated regions with
volumes smaller than the volume of the smallest sonication
cell in the treatment log, or those that have no overlap with
any of the sonication cells in the log, were discarded. The
label image of NPV was retained for quantitative volumetric
analysis and the NPV-objects were meshed with the Delaunay
triangulation algorithm for visual inspection.

The majority of the algorithm was implemented with
MathWorks MATLAB 2012b (Natick, MA). Some of perfor-
mance critical parts of the PV segmentation, and all of the
EM segmentations were implemented in C/C++. N4ITK was
used as part of the Insight Registration Toolkit (ITK), version
4.2.16

The proposed segmentation results were compared to a ref-
erence segmentation drawn manually by an expert (H.J.N.)
and verified by an experienced radiologist (R.B.S.). NPVs
were drawn on the coronal MR slices of the contrast-enhanced
images. NPVs resulting from the treatment were verified by
comparing images taken pre- and post-treatment during the
manual segmentation if available. The reference segmenta-
tions were drawn using Osirix software (version 3.7.1 32-bit)
with the help of a region growing tool, followed by manual
slice-by-slice inspection and manual correction of the NPV
boundary.

The automatic and reference segmentations were com-
pared with the Dice similarity coefficient (DSC).17 In addi-
tion, the volumes of the regions where the compared regions
disagreed were computed (Fig. 3). False negative rate (FNR)
is the number of voxels included in the manual reference but
not in the automatically segmented region, and false positive
rate (FPR) is the opposite. Both are relative to the total
number of voxels in the manual reference. In addition, the
manual reference regions were meshed with the Delaunay tri-
angulation to three-dimensional surfaces, and average point-
to-surface distances (in mm) between the automatic and ref-
erence both ways were computed.

The data set was randomly split into two groups; the first
half was used in teaching the algorithm (T, n = 14), while the



FIG. 3. Visual comparison of the sonication cell cluster and the NPV sur-
faces. A cell cluster surface is shown with the resulting NPV surface (a).
Both are meshed from binary image form, and in this case the surfaces match
and align well. The intersection of voxels covered in both objects is called the
true positives (b). It is not uncommon for HIFU therapy to leave some small
areas covered by the cells to end up untreated (c). When the NPV and sonica-
tion cell regions are compared, the relative number of untreated voxels to all
voxels inside the cells is called the false negative rate (FNR). In many cases,
and especially when larger sonication cell sizes are used, the NPV induced
by the thermal ablation is larger than the cell cluster (d). The number of these
voxels relative to all voxels inside the cells is the false positive rate (FPR). In
this figure, the NPV is compared to the sonication cells when in Sec. 3 the
automatically segmented NPV is compared to the manual reference.

other half was used for validation (V, n = 15). It was further
ensured that at least one sample from each clinic was included
in the teaching and validation group. This split was carried
out prior to the development of the algorithm, and the divi-
sion was kept throughout the study. The algorithm was taught
by testing the parameter combinations, namely the weight of
the MRF term the in EM-segmentation, and several pipeline
configurations by trial and error for the best average DSC for
the teaching set. The validation set was analyzed only after
the parameter and pipeline configurations for the algorithm
were determined.

The proposed algorithm was benchmarked against three
well known segmentation methods: Otsu’s thresholding,18 re-
gion growing,5 and Fuzzy C-means clustering.19 While none
of these fully automatic methods could replace the entire
proposed pipeline, they are suitable for comparisons of per-
formance in the NPV segmentation with the EM-algorithm
(Fig. 1). All the methods chosen are capable of binary seg-
mentation, have no or few parameters to be set and are widely
used in image processing. The distance-to-mean parameter
for region growing was estimated by exhaustive trial and er-
ror segmentations of the T group and set to 8,6% from the
maximum intensity.

The entire method was validated using a regular Intel i7
(4 core, 2.6 GHz), Windows 7 laptop workstation.

Visual examples of the worst, average, and best segmenta-
tion results in DSC are shown in Fig. 4. A Bland-Altman plot
of the difference in volumes measured from the automatic and
reference segmentations [Fig. 5(a)] or the samples by sample
results (Table I) revealed no major outliers with only one sam-
ple outside of the mean ± 1.96 × S.D. boundary [Fig. 5(a)].
The difference between the NPV volumes measured from the
two segmentations was 0.17 ± 6.77 ml (mean ± S.D.) for
all samples, 0.50 ± 8.26 ml for the T and −0.16 ± 5.16 ml
V group. An average DSC of 0.880 ± 0.074 for all
samples between the compared NPVs was achieved (5B,
Table II). Our proposed method concluded in better Dice sim-

FIG. 4. Visual examples of the worst (a)–(c), average (d) and (e), and best
(g)–(i) segmentation results as measured with the Dice similarity coefficient
(DSC) The hand-segmented NPV contour is presented by black, and the au-
tomatically segmented NPV contour by the white line. The segmentation ac-
curacy (in terms of DSC) was typically improved as the treatment volume got
larger. When small volumes were treated, the deposited thermal energy was
subjected to thermal diffusion and perfusion, resulting in imperfect necro-
sis (a)–(c). Also, as the DSC measure is relative to the sizes of the objects
compared, even small absolute deviations in shape give poor values in small
objects.

ilarity when compared to the three reference methods: Otsu
0.788 ± 0.177, region growing 0.755 ± 0.238 and Fuzzy C-
means 0.772 ± 0.193 (Table II). The first seven samples ar-
ranged in ascending (worst to best) order according to DSC
also showed the highest FNR [Fig. 5(b)]; i.e., with small
NPVs the automatic algorithm underestimated the size. On
the other hand, the samples with low DSC did not appear to
have a severe shape deviation. This can be seen from the aver-
age distances from the nodes of the automatically segmented
surface to the reference surface [auto. to ref., Fig. 5(c)]. The
plot shows that the average auto. to ref. distances of samples
1–7 did not differ from the rest of the set. The 2+ mm spikes
in Fig. 5(c) (sample 2, ref. to auto., samples 8 and 20 auto to
ref.) are explained by protuberances or small isolated surfaces
not present in the surface to be compared. Figure 5(d) shows
that the lowest DSCs are measured from the smallest seg-
mented volumes. The average DSC of NPVs for all samples
above 30 ml was 0.921 ± 0.031 (Otsu 0.876 ± 0.069, region
growing 0.869 ± 0.074, Fuzzy C-means 0.871 ± 0.070).
Figure 5(e) shows that volume of the cell cluster in the treat-
ment log was somewhat correlated with the volume of the
NPVs in smaller regions, but not on the larger ones.

The average execution time on the Intel i7 (Windows 7
workstation) was 1.6 ± 0.7 min per subject. The time depends
heavily on the size of the 3D volume and the surface area of
the objects to be segmented. Approximately 85% of the total



FIG. 5. An excellent agreement between the volumes of the automatically segmented NPV and the manual reference was reached as shown by Bland-Altman
plot (a). The plot shows a slight tendency of the automatic algorithm to underestimate the volume of the smaller NPV regions. For all samples, the average
difference between the measured volumes is very small, 0.17 ml. Samples belonging to the teaching set are indicated on the DSC plot with a square. Figure 5(b)
plots DSC, FNR, and FPR values of data sets in ascending order according to the DSC. The worst samples (1–7) according to the DSC also show the highest
FNR; thus, the automatic method underestimated the size of NPV in these samples. Point to surface distances from mesh nodes to the surface measured both
ways show roughly an average accuracy of 1 mm with some peaks (c). The peaks indicate protuberances or small isolated objects not found in the surface to
be compared to. Figure 5(d) shows further evidence of poorer DSC performance in small treatment volumes, especially site 3 (n = 3). NPV volumes of 30 ml
and above gave an average accuracy of DSC = 0.921. Figure 5(e) shows the tendency of the automatic algorithm in producing smaller NPVs than the treatment
cell volume below 30 ml. From 30 to 80 ml, there may be a vague correlation between the volumes. NPVs sized over 80 ml did not seem to correlate with cell
cluster size. This is probably due to the secondary effects of the thermal ablation present with higher doses. In Fig. 5(e), the treatment cell volumes are plotted
against the automatically segmented NPV volumes, but the results were similar with the manual reference.

pipeline execution time was spent on the two ASM segmenta-
tion steps (Fig. 1). The tested implementation was configured
for verifying the feasibility of the method, and thus was not
optimized for speed. For example, the segmentation pipeline
was implemented single-threaded and included a lot of writ-
ing and reading of the intermediate results on the hard drive.
The time measured does not include the preprocessing or in-
terpolation of the slice stack to 3D volume that typically takes
less than ten seconds, most of which is disk I/O. The reference
segmentations by hand took in the order of tens of minutes per
patient.

Based on the results, the automatic segmentation algorithm
developed was able to give consistent results with a very good
match to the reference boundary drawn manually by an ex-
pert (Figs. 4 and 5). The likeness of the automatic and hand-
segmented NPV regions as measured with the Dice similarity
coefficient was found to be high (0.880 ± 0.074 for all sam-
ples, 0.885 ± 0.0780 for the T and 0.876 ± 0.072 for the V
groups) [Fig. 5(b), Table II]. Since the volume of the necrosed
tissue induced by the thermal ablation is the main indicator of



TABLE I. Sample-specific segmentation data with samples ordered accord-
ing to DSC, as also plotted in Fig. 5(b).

Auto. Ref.
Sample volume volume
index Site Set DSC (ml) (ml) FNR FPR

1 3 V 0.70 3 2 0.45 0.01
2 1 T 0.72 29 16 0.44 0.00
3 3 T 0.76 5 4 0.35 0.06
4 4 T 0.78 5 4 0.27 0.14
5 1 V 0.78 9 9 0.23 0.21
6 1 V 0.82 13 11 0.24 0.09
7 1 V 0.84 22 16 0.27 0.01
8 4 T 0.84 54 51 0.18 0.12
9 3 V 0.85 20 21 0.13 0.18
10 1 T 0.86 4 5 0.10 0.19
11 2 V 0.86 24 20 0.21 0.05
12 2 T 0.86 88 101 0.01 0.22
13 1 V 0.90 65 61 0.12 0.06
14 1 T 0.90 102 110 0.06 0.14
15 1 V 0.91 33 30 0.14 0.03
16 1 T 0.91 112 104 0.12 0.05
17 1 V 0.91 42 38 0.13 0.03
18 4 T 0.92 78 69 0.13 0.02
19 1 V 0.92 137 147 0.04 0.12
20 4 T 0.93 179 164 0.11 0.03
21 1 V 0.93 17 16 0.09 0.04
22 4 T 0.93 32 29 0.10 0.03
23 1 T 0.94 68 70 0.05 0.08
24 1 V 0.95 102 111 0.01 0.10
25 1 V 0.95 62 61 0.06 0.04
26 1 V 0.96 89 88 0.05 0.04
27 4 V 0.96 53 51 0.06 0.02
28 4 T 0.96 172 174 0.03 0.05
29 4 T 0.96 103 106 0.03 0.05

the success of the treatment, the result is excellent considering
the very complex shapes of the NPV. The computation time
even in its current nonoptimized form was reasonable with a
conventional laptop computer and thus feasible to be imple-
mented for a clinical environment.

In all of the samples with DSC < 0.8, the automatic
segmentation method underestimated the volume of NPV
[Fig. 5(b), Table I]. This is the result of a small intended
treatment volume; when only a small portion of the fibroid
is treated, the deposition of thermal energy is diffused and
perfused away, resulting in nonperfect necrosis. The use of
small sonication cells not only increases the risk of heat dif-
fusion, but also results in NPV with blurry borders in contrast-
enhanced MR images taken immediately after the treatment.
This makes the classification of voxels on the PV/NPV border
difficult, also for a human observer.

The success of the automatic segmentation method relies
on two steps: ASM segmentation of the outer border of the
PV in order to find the mask that contains all NPV and EM-
segmentation to detect the voxels with NPV inside the mask.
ASM segmentation relies partially on the treatment log to be-
come properly initialized. Also, the postprocessing steps of
the segmentation of NVP rely somewhat on the treatment
log. Based on the available data, the treatment log seems to
match reasonably well the NPV as seen in the postoperative
images. There is still a risk of patient or intestine movement
prior or during the postoperative scan, which could misalign
the fibroid from the location of the sonication cells fixed to
the MR coordinate system. The ASM-segmentation method
used was able to tolerate the slight movement when neces-
sary. However, large subject or fibroid movement should be
compensated by other means. One practical way to solve this
would be to use conventional tools for registering the pre- and

TABLE II. Averaged results of the proposed and the three reference methods for teaching (T) and validation (V) sample groups and all samples (all) pooled
together.

Proposed EM-based
method Otsu Region growing Fuzzy C-means

Set Measurement Avg Std Avg Std Avg Std Avg Std

T DSC 0.885 0.080 0.801 0.185 0.808 0.226 0.794 0.189
V DSC 0.876 0.072 0.776 0.174 0.705 0.246 0.751 0.202
All DSC 0.880 0.074 0.788 0.177 0.755 0.238 0.772 0.193
T FNR 0.14 0.13 0.04 0.06 0.19 0.12 0.04 0.06
V FNR 0.15 0.11 0.03 0.03 0.26 0.21 0.02 0.03
All FNR 0.15 0.12 0.04 0.04 0.22 0.11 0.03 0.04
T FPR 0.072 0.063 0.64 1.08 1.93 7.04 0.69 1.18
V FPR 0.080 0.066 0.71 0.87 3.18 11.2 0.91 1.18
All FPR 0.076 0.064 0.68 0.96 2.57 9.27 0.81 1.17
T Ref. to auto. dist. 0.93 (mm) 0.36 (mm) 0.99 (mm) 0.51 (mm) 1.38 (mm) 0.87 (mm) 1.01 (mm) 0.51 (mm)
V Ref. to auto. dist. 0.85 (mm) 0.25 (mm) 1.01 (mm) 0.48 (mm) 1.86 (mm) 1.41 (mm) 1.08 (mm) 0.57 (mm)
All Ref. to auto. dist. 0.89 (mm) 0.31 (mm) 1.00 (mm) 0.48 (mm) 1.63 (mm) 1.18 (mm) 1.05 (mm) 0.53 (mm)
T Auto. to ref. dist. 1.01 (mm) 0.67 (mm) 3.59 (mm) 3.94 (mm) 2.82 (mm) 5.23 (mm) 4.00 (mm) 3.94 (mm)
V Auto. to ref. dist. 0.59 (mm) 0.27 (mm) 3.22 (mm) 4.70 (mm) 3.39 (mm) 6.42 (mm) 3.92 (mm) 5.12 (mm)
All Auto. to ref. dist. 0.79 (mm) 0.54 (mm) 3.40 (mm) 4.28 (mm) 3.11 (mm) 5.78 (mm) 3.96 (mm) 4.51(mm)



postoperative image stacks. The ASM-segmentation method
does not require precise registration and, thus, even quick
manual approximation such as dragging the surface model
to a new location on the treatment console would probably
work.

The EM-segmentation is critical in identifying the voxels
belonging to NPV. The decision whether a voxel in the mask
encapsulated by the ASM segmentation is classified as PV or
NPV relies mostly on probabilities derived from the intensity
distribution. An MRF probability component was used in or-
der to achieve a smoother and less noisy result. The weight
of the MRF component in the probability estimation was kept
rather low, since this appeared to give better results for the
smaller NPVs in the teaching set. For the larger NPVs, the
weight of MRF did not make much difference. While MRF
is useful in bringing local information to the classification,
it probably cannot compensate cases where the intensity dis-
tributions are severely skewed or overlap extensively. This
may happen for example if the inhomogeneity artifacts are
not compensated successfully earlier in the pipeline. We also
tested the idea of making an a priori probability map based on
the voxels inside the cells of the treatment log for the EM al-
gorithm. This works well with larger sonication cell clusters,
but may give false estimates with smaller ones. Using such
a probability map did not improve overall results, so it was
eventually left out.

The proposed EM-segmentation method for NPV was
tested against three widely used segmentation methods:
Otsu’s thresholding region growing and Fuzzy C-means clus-
tering. Our method was found to give more accurate re-
sults through the NPV size range, especially on the smaller
NPVs. The difference in similarity in larger, 30+ ml NPVs
was smaller but still clear. An interesting finding is that the
EM method slightly underestimates the NPV (larger FNR
than FPR in Table II), all reference methods overestimate
the NPV (smaller FNR than FPR in Table II). This is prob-
ably because of the MRF component used with the EM
method.

The region growing method was found very sensitive to
the selection of the distance parameter. The difference in re-
sults of the T (DSC = 0.808) and V (DSC = 0.705) sam-
ple groups for region growing was the largest for all tested
methods. The proposed method performs almost equally on
T (DSC = 0.885) and V (DSC = 0.876) groups. This sug-
gests that the success of the method is not dependent on
the selection of the single parameter, the weight of the
MRF component. We believe that the method would have
performed similarly with a smaller training group. Impor-
tantly the smaller and more blurry NPVs were represented
in the training group; therefore, methods capable of seg-
menting also these challenging samples were selected for the
pipeline.

While the technique is intended for segmenting nonper-
fused volumes in uterine fibroids imaged using MR, we fore-
see that this approach may be usable for verifying treatment
outcome in other clinical indications; i.e., segmentation of
treatment volume based on label or label-free contrast could
be used in order to verify outcome of MR-HIFU therapy in

treatment of pathologies in organs such as the liver, prostate
or breast.

In conclusion, we have developed a fully automatic seg-
mentation algorithm for predicting the treatment outcome
during MR-HIFU therapy of uterine fibroids. We have found
the method fast and, precise and thus feasible to be utilized in
a clinical context.
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